Acuerdo No. 775 6 de agosto de 2015

Por el cual se aprueba la incorporación de un cambio de los parámetros técnicos y los sistemas de control asociados a las unidades 1, 2, 3 y 4 de la central de generación Chivor

El Consejo Nacional de Operación en uso de sus facultades legales, en especial las conferidas en el Artículo 36 de la Ley 143 de 1994, el Anexo general de la Resolución CREG 025 de 1995 y su Reglamento Interno y según lo aprobado en la reunión No. 440 del 6 de agosto de 2015 y,

CONSIDERANDO

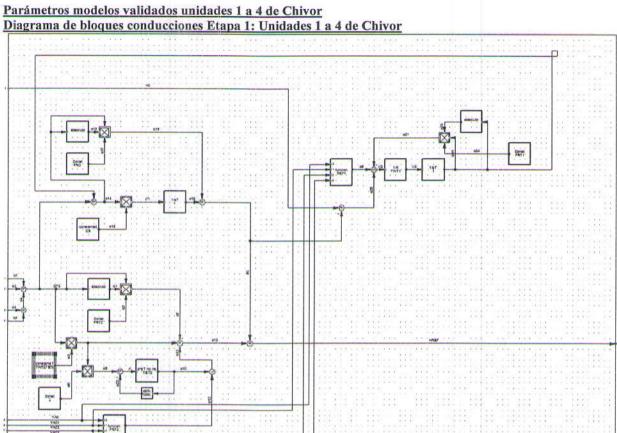
- 1. Que mediante el Acuerdo 752 de 2015 (antes Acuerdo 640 de 2014) se establecieron los requerimientos para la obtención y validación de parámetros del generador y los modelos del sistema de excitación, control de velocidad/potencia y estabilizadores de sistemas de potencia de las unidades de generación del SIN y se definieron las pautas para las pruebas y reajustes de los controles de generación.
- 2. Que siguiendo el procedimiento para solicitar el cambio de parámetros técnicos de las plantas de generación del Acuerdo 497 de 2010, AES CHIVOR S.A. E.S.P. solicitó al CND mediante comunicaciones con número de radicado en XM 201544007243-3 del 20 de mayo de 2015 y 201544009936-3 del 30 de junio de 2015, el cambio de los parámetros técnicos y los sistemas de control asociados a los generadores de la central hidroeléctrica Chivor.
- 3. Que XM S.A. E.S.P. mediante comunicación 011089-1 del 6 de julio de 2015 dio concepto favorable a la solicitud de modificación de los parámetros técnicos y los sistemas de control asociados a los generadores de la central hidroeléctrica Chivor.
- 4. Que el Subcomité de Controles en su reunión 50 del 23 de julio de 2015 dio su concepto favorable a la solicitud de modificación de los parámetros técnicos y los sistemas de control asociados a los generadores de las unidades 1, 2, 3 y 4 de la central hidroeléctrica Chivor.
- 5. Que el Comité de Operación en su reunión 261 del 30 de julio de 2015 recomendó al CNO la expedición del presente Acuerdo.

ACUERDA:

PRIMERO. Aprobar la incorporación de los cambios en los parámetros técnicos y los sistemas de control asociados a los generadores de las unidades 1, 2, 3 y 4 de la central de generación Chivor como se presenta en el Anexo del presente Acuerdo que hace parte integral del mismo.

SEGUNDO. El presente Acuerdo rige a partir del despacho que se realizará el 11 de agosto de 2015 para la operación del 12 de agosto de 2015.

El Presidente (Ad Hoc),

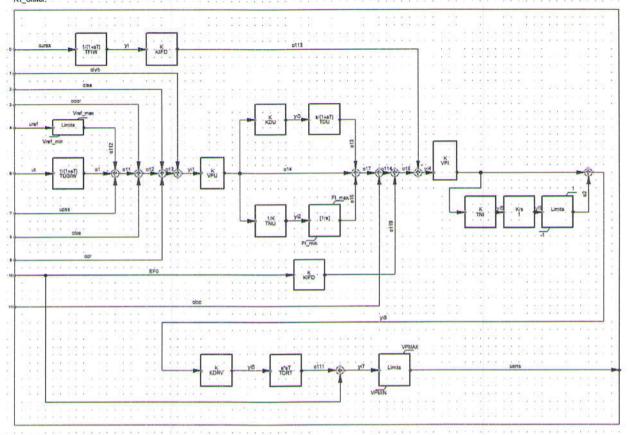

Secretario Técnico,

WILMAN GARZÓN RAMÍREZ

ALBERTO OLARTE AGUIRRE

ANEXO

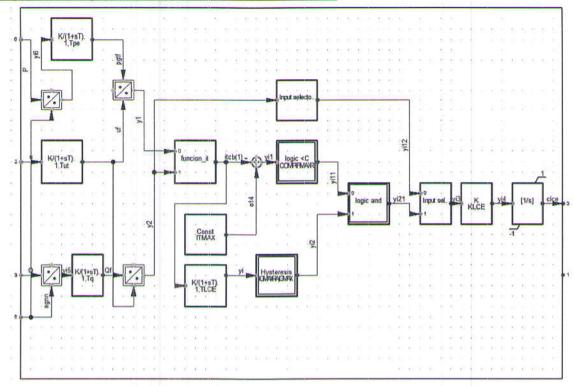
ANEXO



Parámetros conducciones Etapa 1: Unidades 1 a 4 de Chivor:

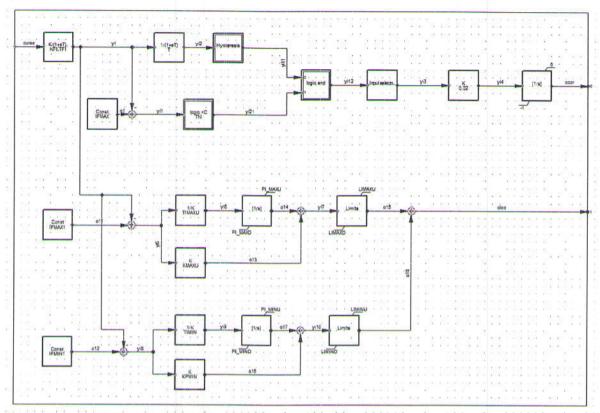
Parámetro	Valor	Unidad	Descripción
FRT2	0	[pu]	Ganancia
TWT2	0.8	[pu]	Factor ganancia
TET2	2.385	[pu]	Factor ganancia
CS	130	[pu]	Constante de tiempo integrador
FRC	0	[pu]	Ganancia
FRT1	0.005	[pu]	Ganancia
TWT1	0.2	[pu]	Constante de tiempo integrador

Unidad Chivor 1:


Diagrama de bloques AVR:

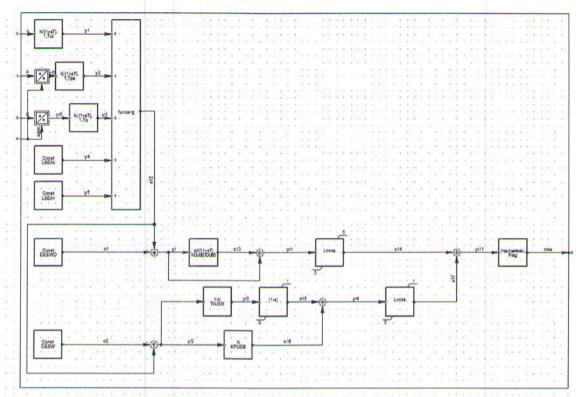
Parámetros AVR:

	Parameter	
►KIFD Ganancia del filtro para la medición de la corrient	0.5808	•
VPU Amplificación proporcional [p.u]	5.	
KDU Amplificación derivativa [p.u]	0.	-
TNU Constante de tiempo integral [s]	0.25	
TDU Constante de tiempo derivativa [s]	0.0059	
VPI Amplificación proporcional [p.u]	3.	
TNI Constante de tiempo integral [s]	0.	
TFIW Constante de tiempo del filtro para la medición d	0.00202	8
TUGIW Constante de tiempo del filtro para medición de	0.0059	
KDRV Ganancia del Driver [p.u]	5.5	0
TDRT Tiempo muerto [s]	0.001	
Vref_min Limitador inferior de la tensión de referencia [p	0.9272	
PI_min Limitador inferior del integrador del controlador P	-0.45	36
VPMIN Limitador del Ceiling mínimo [p.u]	-4.5	100 mg
Vref_max Limitador superior de la tensión de referencia	1.0801	
PI_max Limitador superior del integrador del controlador	0.45	
VPMAX Limitador del Ceiling máximo [p.u]	5.	
	· · · · · · · · · · · · · · · · · ·	П


Diagrama de bloques del Limitador de Corriente Estatórica:

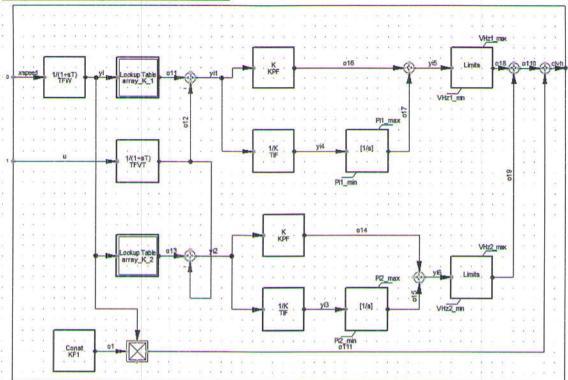
Parámetros del Limitador de Corriente Estatórica:

	Parameter	
Tpe Constante de tiempo del filtro de medicion de Pot	0.02	4
Tut Constante de tiempo del filtro de medicion del volt	0.0059	
Tq Constante de tiempo del filtro de medicion de Pote	0.02	
ITMAX Máxima corriente estátorica [p.u]	1.	
TLCE Retardo [s]	29.98	ě
IGMAXRA Umbral superior [p.u]	0.	
IGMAXRB Umbral inferior [p.u]	-0.03	
KLCE Ganancia del LCE [s]	0.025	83
COMPIFMAXR Comparador [p.u]	-0.03	8
		N. Con.


Diagrama de bloques de Limitadores de Corriente de Campo

Parámetros de Limitadores de Corriente de Campo

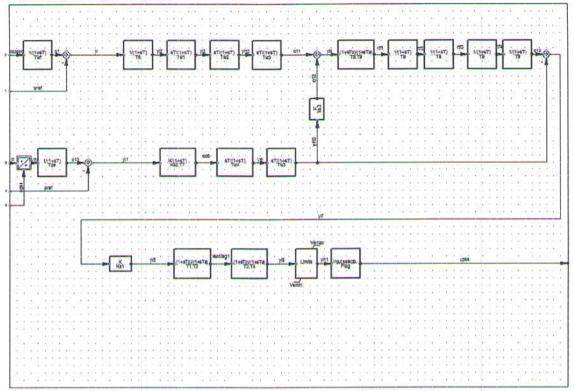
Parámetro	Valor	Unidad	Descripción
IFMAX	2	[p.u]	Referencia de máxima corriente de campo con retardo
ThI	-0.04	[p.u]	Comparador
IFMAX1	2.3	[p.u]	Referencia de máxima corriente de campo
KMAXU	3	[p.u]	Ganancia del controlador PI - Limitador de máxima corriente de campo
TIMAXU	0.04	[s]	Constante de tiempo del controlador PI - Limitador de máxima corriente de campo
IFMIN1	0.207	[p.u]	Referencia de mínima corriente de campo
TIMIN	0.0601	[s]	Constante de tiempo del controlador PI - Limitador de mínima corriente de campo
KPMIN	4	[p.u]	Ganancia del controlador PI - Limitador de mínima corriente de campo
Т	7.47	[p.u]	Constante de tiempo del lazo limitador de máxima corriente de campo con retardo
KFI	0.5808	[p.u]	Ganancia del filtro de la corriente de excitación
TFI	0.00202	[s]	Constante de tiempo del filtro de la corriente de excitación
PI_MAXD	-1	[p.u]	Límite inferior del integrador del controlador PI - Limitador de máxima corriente de campo
LIMAXD	-1	[p.u]	Límite inferior del lazo limitador de máxima corriente de campo
PI_MIND	0	[p.u]	Límite inferior del integrador del controlador PI - Limitador de mínima corriente de campo
LIMIND	0	[p.u]	Límite inferior del lazo limitador de mínima corriente de campo
PI_MAXU	0	[p.u]	Límite superior del integrador del controlador PI - Limitador de máxima corriente de campo
LIMAXU	0	[p.u]	Límite superior del lazo Limitador de máxima corriente de campo
PI_MINU	1	[p.u]	Límite superior del integrador del controlador PI - Limitador de mínima corriente de campo
LIMINU	1	[p.u]	Límite superior del lazo Limitador de mínima corriente de campo


Diagrama de bloques del limitador LPQ

Parámetros del limitador LPO

	Parameter	
• Tut Constante de tiempo del filtro de voltaje [s]	0.0059	
Tpe Constante de tiempo del filtro de potencia activa [s]	0.02	B
Tq Constante de tiempo del filtro de potencia reactiva	0.02	
LSEXq Parámetro Xq [p.u]	1.113	100
LSEXn Parámetro Xn [p.u]	0.0693	NA.
DESW Límite estacionario del ángulo de carga [p.u]	1.27	
KPUEB Amplificación proporcional [p.u]	0.	X
TIUEB Constante de tiempo integral [p.u]	4.	100
DESWD Límite diferencial del ángulo de carga [p.u]	2.	200
KDUEB Amplificación derivativa [p.u]	1.5	*
TDUEB Constante de tiempo derivativa [p.u]	3.	800
Flag Define si está activo el limitador []	1.	7

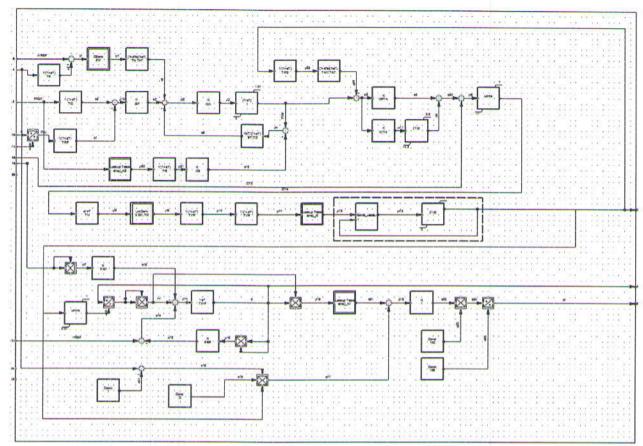
Diagrama de bloques del limitador VHz



Parámetros del limitador VHz

Parámetro	Valor	Unidad	Descripción
KPF	0	[p.u]	Ganancia proporcional del controlador PI - Lazo frecuencia
TIF	2.49	[s]	Constante de tiempo integral del controlador PI - Lazo frecuencia
KF1	0	[p.u]	ganancia del limitador
TFW	0.02	[s]	Filtro de velocidad
TFVT	0.008	[p.u]	Filtro de la señal de tensión
PI1_min	-0.5	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 1
PI2_min	0	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 2
VHz1_min	-0.5	[p.u]	Limitador inferior del VHz - Lazo 1
VHz2_min	0	[p.u]	Limitador inferior del VHz - Lazo 2
PI1_max	0	[p.u]	Limitador superior del integrador del controlador PI - Lazo 1
PI2_max	0.2	[p.u]	Limitador superior del integrador del controlador PI - Lazo 2
VHz1_max	0	[p.u]	Limitador superior del VHz - Lazo 1
VHz2_max	0.2	[p.u]	Limitador superior del VHz - Lazo 2

K_1_x	K_1_y	K_2_x	K_2_y
0	0	0	0
1	1.0801	1	0.9253


Diagrama de bloques del PSS

Parámetros del PSS

Parámetro	Valor	Unidad	Descripción	
Tw2	4.2202	[s]	Constante de tiempo de filtro washout	
Тре	0.02	[s]	Constante de tiempo del filtro de potencia eléctrica	
Tw1	4.2202	[s]	Constante de tiempo de filtro washout	
Т6	0.02	[s]	Constante de tiempo de filtro transductor desviación de frecuencia	
Ks2	1	[s]	Ganancia de filtro del PSS	
T7	0.0201	[s]	Constante de tiempo de filtro acondicionador de potencia eléctrica	
Tw4	4.2202	[s]	Constante de tiempo de filtro washout	
Ks3	1	[p.u]	Factor de acoplamiento de señales	
T8	3.2002	[s]	Constante de tiempo de filtro rastreador de rampa	
Т9	0.6401	[s]	Constante de tiempo de filtro rastreador de rampa	
Ks1	0.35	[p.u]	Ganancia del PSS	
T1	0.0098	[s]	Constante de tiempo del compensador de fase	
T2	0.009801	[s]	Constante de tiempo del compensador de fase	
T3	0.0098	[s]	Constante de tiempo del compensador de fase	
T4	0.009801	[s]	Constante de tiempo del compensador de fase	
Twf	0.02	[s]	Constante de tiempo del filtro de velocidad	
Flag	1	[p.u]	Bandera para inhibir o activar operación del PSS	
Tw3	4.2202	[s]	Constante de tiempo de filtro washout	
Vsmin	-0.01	[p.u]	Mínimo valor de la señal de salida del PSS	
Vsmax	0.01	[p.u]	Máximo valor de la señal de salida del PSS	

Diagrama de bloques del PCU

Par	éám	et	roe	del	PC	IΤ
\mathbf{I}		LUL	105			

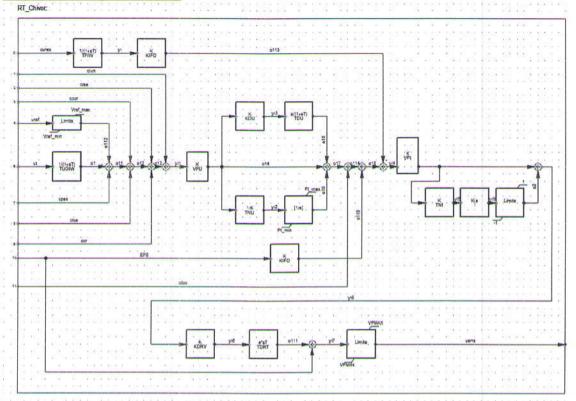
Parámetro	Valor	Unidad	Descripción	
ZM	0.0005	[pu]	Zona Muerta	
TF	0.5	[seg]	Filtro Pasa baja	
Tn	1.4	[s]	Constante de tiempo del acelerómetro	
Tn1	0.14	[s]	Constante de tiempo del acelerómetro	
TG	0.7	[s]	Constante de tiempo del filtro	
TFP	3.3	[s]	Constante de tiempo del filtro	
KW	80	[pu]	Ganancia del servo virtual	
KPYA	70	[pu]	Constante proporcional	
TM	0.15	[s]	Tiempo muerto	
TVP	0.02	[s]	Filtro válvula piloto	
FRP	0	[pu]	Ganancia	
TWP	0.04	[s]	Constante de tiempo integrador	
TX	10	[s]	Constante de tiempo del limitador de tasa	
D	0.1	[pu]	Ganancia	
BP	0.04	[pu]	Estatismo	
ВТ	0.4	[pu]	Estatismo transitorio	

Parámetro	Valor	Unidad	Descripción	
TD	8	[s]	Constante derivativa	
TR	0.7	[s]	Constante de tiempo del filtro rampeador	
KR	1	[pu]	Ganancia del filtro rampeador	
TAG	0.05	[s]	Constante de tiempo filtro control posición agujas	
TAV	0.05	[s]	Constante de tiempo filtro control posición agujas	
TAT	0.01	[s]	Constante de tiempo filtro control posición agujas	
KIYA	1	[pu]	Constante integral	

Tabla Zona Muerta y ganancia hidráulica:

K_x	К_у
-1.15	-0.028
-0.5	-0.014
-0.02	-0.001
-0.01	0
0	0
0.01	0
0.02	0.001
0.5	0.014
0.85	0.028

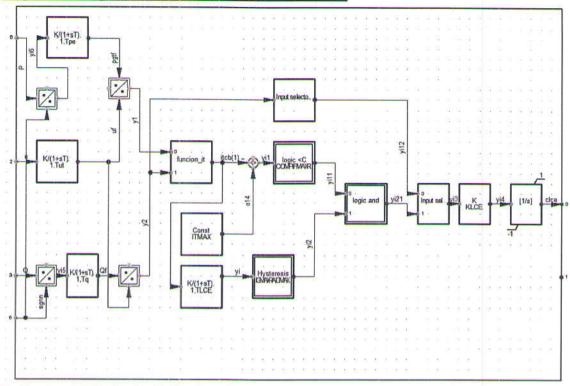
Tabla Potencia - Apertura - Potencia


	A STATE OF THE OWNER, WHEN PERSONS AND ADDRESS OF THE OWN	NAME AND POST OFFICE ADDRESS OF THE PERSON NAMED IN	THE R. P. LEWIS CO., LANSING SPINSOR, S	
K1_x	К1_у	K2_x	K2_y	
0	-0.0271	-0.0271	0	
0.1	0.136937	0.136937	0.1	
0.2	0.289408	0.289408	0.2	
0.3	0.430313	0.430313	0.3	
0.4	0.559652	0.559652	0.4	
0.5	0.677425	0.677425	0.5	
0.6	0.783632	0.783632	0.6	
0.7	0.878273	0.878273	0.7	
0.8	0.961348	0.961348	0.8	
0.9	1.032857	1.032857	0.9	
1	1.0928	1.0928	1	

Nota: En Digsilent se construye un arreglo de 1001 datos a partir de la información reportada por el agente para mejorar respuesta inicial del modelo

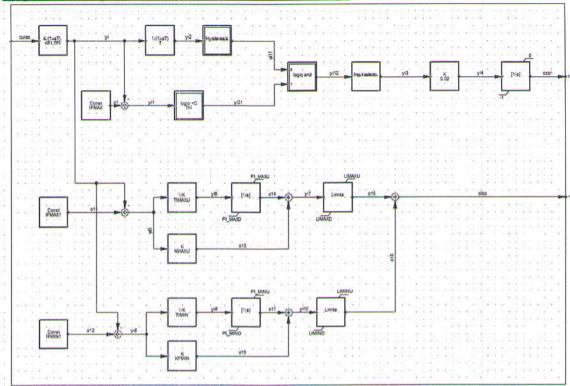
			TA1	35,599999540
			TA2	38.399999510
			TA3	41.799999960
			TA4	46,999999440
			TA5	52.899999110
			TA6	61,100000420
			TA7	73.200001000
			TA8	94.599995740
			TA9	143.70000500
			TA10	248.00000400
		Limitador con diferentes límites		
		superior y inferior por banda de	TC1	-481.2782751
		la señal del distribuidor	TC2	-338.3980238
		Ejemplo:	TC3	-241.3010955
			TC4	-151.8995033
	Limite		TC5	-116,0995205
5(s)	apertura /	Cuando el distribuidor está entre	TC6	-98.30038632
	cierre	AC(x+1) y AC(x) el limitador irá	TC7	-86.20020860
		tener limite superior 1/TAx y	TC8	-70.92198582
		inferior 1/TCx (el x es un	TC9	-70.92198582
		numero)	TC10	-70.92198582
			AC1	0.0
			AC2	0.1
			AC3	0.2 0.3
			AC4 AC5	0.3
				0.4
			AC6 AC7	0.5
			AC8	0.6
			AC9	0.7
			AC1D	0.9
			AC11	1.0

Unidad Chivor 2:


Diagrama de bloques del AVR:

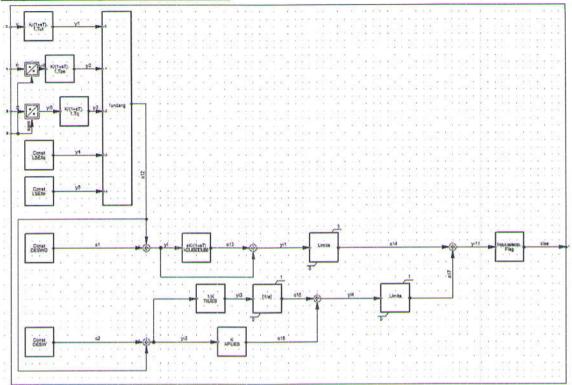
Parámetros del AVR:

	Parameter	
KIFD Ganancia del filtro para la medición de la corrient		4
VPU Amplificación proporcional [p.u]	6.5	Ī
KDU Amplificación derivativa [p.u]	0.	
TNU Constante de tiempo integral [s]	0.25	
TDU Constante de tiempo derivativa [s]	0.0059	
VPI Amplificación proporcional [p.u]	1.6631	8
TNI Constante de tiempo integral [s]	0.	
TFIW Constante de tiempo del filtro para la medición d	0.00202	X
TUGIW Constante de tiempo del filtro para medición de	0.0059	X.
KDRV Ganancia del Driver [p.u]	5.5	
TDRT Tiempo muerto [s]	0.001	
Vref_min Limitador inferior de la tensión de referencia [p	0.9272	
PI_min Limitador inferior del integrador del controlador P	-0.45	
VPMIN Limitador del Ceiling mínimo [p.u]	-4.34	
Vref_max Limitador superior de la tensión de referencia	1.0801	
Pl_max Limitador superior del integrador del controlador	0.45	
VPMAX Limitador del Ceiling máximo [p.u]	4.94	Ė
	4 1	


Diagrama de bloques del Limitador de Corriente Estatórica:

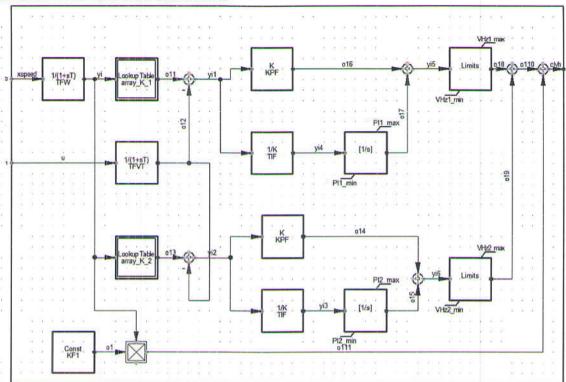
Parámetros del Limitador de Corriente Estatórica:

Tit Constante de tiempo del filtro de medicion de Pot Tut Constante de tiempo del filtro de medicion del volt Tq Constante de tiempo del filtro de medicion de Pote ITMAX Máxima corriente estátorica [p.u] 1. TLCE Retardo [s] IGMAXRA Umbral superior [p.u] IGMAXRB Umbral inferior [p.u] KLCE Ganancia del LCE [s] COMPIFMAXR Comparador [p.u] -0.015		Parameter
Tq Constante de tiempo del filtro de medicion de Pote 0.02 ITMAX Máxima comiente estátorica [p.u] 1. TLCE Retardo [s] 15. IGMAXRA Umbral superior [p.u] -0.015 IGMAXRB Umbral inferior [p.u] -0.02 KLCE Ganancia del LCE [s] 0.025	▶Tpe Constante de tiempo del filtro de medicion de Pot	0.02
ITMAX Máxima comiente estátorica [p.u] 1. TLCE Retardo [s] 15. IGMAXRA Umbral superior [p.u] -0.015 IGMAXRB Umbral inferior [p.u] -0.02 KLCE Ganancia del LCE [s] 0.025	Tut Constante de tiempo del filtro de medicion del volt	0.0059
TLCE Retardo [s] 15. IGMAXRA Umbral superior [p.u] -0.015 IGMAXRB Umbral inferior [p.u] -0.02 KLCE Ganancia del LCE [s] 0.025	Tq Constante de tiempo del filtro de medicion de Pote	0.02
IGMAXRA Umbral superior [p.u] -0.015 IGMAXRB Umbral inferior [p.u] -0.02 KLCE Ganancia del LCE [s] 0.025	ITMAX Máxima corriente estátorica [p.u]	1.
IGMAXRB Umbral inferior [p.u] -0.02 KLCE Ganancia del LCE [s] 0.025	TLCE Retardo [s]	15.
KLCE Ganancia del LCE [s] 0.025	IGMAXRA Umbral superior [p.u]	-0.015
	IGMAXRB Umbral inferior [p.u]	-0.02
COMPIFMAXR Comparador [p.u] -0.015	KLCE Ganancia del LCE [s]	0.025
	COMPIFMAXR Comparador [p.u]	-0.015
		1. 5


Diagrama de bloques de Limitadores de Corriente de Campo

Parámetros de Limitadores de Corriente de Campo

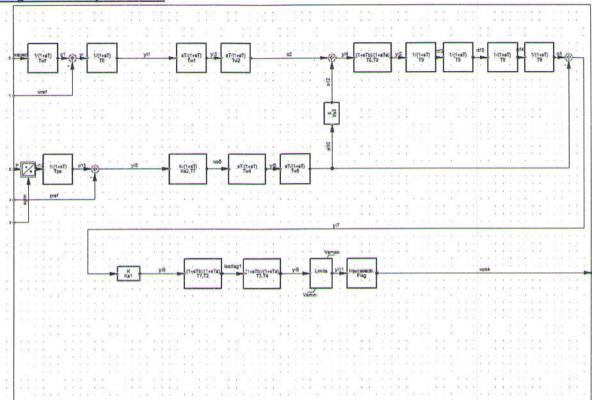
Parámetro	Valor	Unidad	Descripción
IFMAX	2.14	[p.u]	Referencia de máxima corriente de campo con retardo
ThI	-0.03	[p.u]	Comparador
IFMAX1	2.3	[p.u]	Referencia de máxima corriente de campo
KMAXU	3	[p.u]	Ganancia del controlador PI - Limitador de máxima corriente de campo
TIMAXU	0.04	[s]	Constante de tiempo del controlador PI - Limitador de máxima corriente de campo
IFMIN1	0.32	[p.u]	Referencia de mínima corriente de campo
TIMIN	0.0601	[s]	Constante de tiempo del controlador PI - Limitador de mínima corriente de campo
KPMIN	4	[p.u]	Ganancia del controlador PI - Limitador de mínima corriente de campo
Т	3	[p.u]	Constante de tiempo del lazo limitador de máxima corriente de campo con retardo
KFI	1	[p.u]	Ganancia del filtro de la corriente de excitación
TFI	0.00202	[s]	Constante de tiempo del filtro de la corriente de excitación
PI_MAXD	-1	[p.u]	Límite inferior del integrador del controlador PI - Limitador de máxima corriente de campo
LIMAXD	-1	[p.u]	Límite inferior del lazo limitador de máxima corriente de campo
PI_MIND	0	[p.u]	Límite inferior del integrador del controlador PI - Limitador de mínima corriente de campo
LIMIND	0	[p.u]	Límite inferior del lazo limitador de mínima corriente de campo
PI_MAXU	0	[p.u]	Límite superior del integrador del controlador PI - Limitador de máxima corriente de campo
LIMAXU	0	[p.u]	Límite superior del lazo Limitador de máxima corriente de campo
PI_MINU	1	[p.u]	Límite superior del integrador del controlador PI - Limitador de mínima corriente de campo
LIMINU	1	[p.u]	Límite superior del lazo Limitador de mínima corriente de campo


Diagrama de bloques del limitador LPQ

Parámetros del limitador LPO

Tut Constante de tiempo del filtro de voltaje [s] Tpe Constante de tiempo del filtro de potencia activa [s] Tq Constante de tiempo del filtro de potencia reactiva 1.113 LSEXq Parámetro Xq [p.u] LSEXq Parámetro Xn [p.u] DESW Límite estacionario del ángulo de carga [p.u] TIUEB Constante de tiempo integral [p.u] DESWD Límite diferencial del ángulo de carga [p.u] TIUEB Constante de tiempo integral [p.u] DESWD Límite diferencial del ángulo de carga [p.u] LSEXQ Parámetro Xn [p.u] TIUEB Constante de tiempo integral [p.u] A. DESWD Límite diferencial del ángulo de carga [p.u] TDUEB Constante de tiempo derivativa [p.u] TDUEB Constante de tiempo derivativa [p.u] 3.	Tpe Constante de tiempo del filtro de potencia activa [s] 0.02 Tq. Constante de tiempo del filtro de potencia reactiva 0.02 LSEXq Parámetro Xq [p.u] 1.113 LSEXn Parámetro Xn [p.u] 0.0693 DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	Land to the second of the second of	Parameter	
Tq Constante de tiempo del filtro de potencia reactiva LSEXq Parámetro Xq [p.u] LSEXn Parámetro Xn [p.u] DESW Límite estacionario del ángulo de carga [p.u] KPUEB Amplificación proporcional [p.u] TIUEB Constante de tiempo integral [p.u] DESWD Límite diferencial del ángulo de carga [p.u] LSEXN Parámetro Xn [p.u] 1.29 KPUEB Amplificación derivativa [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] LSEXN Parámetro Xn [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 1.5	Tq Constante de tiempo del filtro de potencia reactiva LSEXq Parámetro Xq [p.u] LSEXn Parámetro Xn [p.u] DESW Límite estacionario del ángulo de carga [p.u] KPUEB Amplificación proporcional [p.u] TIUEB Constante de tiempo integral [p.u] DESWD Límite diferencial del ángulo de carga [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] KDUEB Amplificación derivativa [p.u] TDUEB Constante de tiempo derivativa [p.u] 3.	►Tut Constante de tiempo del filtro de voltaje [s]	0.0059	
LSEXq Parámetro Xq [p.u] 1.113 LSEXn Parámetro Xn [p.u] 0.0693 DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	LSEXq Parámetro Xq [p.u] 1.113 LSEXn Parámetro Xn [p.u] 0.0693 DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	Tpe Constante de tiempo del filtro de potencia activa [s]	0.02	I
LSEXn Parámetro Xn [p.u] 0.0693 DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	LSEXn Parámetro Xn [p.u] 0.0693 DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	Tq Constante de tiempo del filtro de potencia reactiva	0.02	
DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	DESW Límite estacionario del ángulo de carga [p.u] 1.29 KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	LSEXq Parámetro Xq [p.u]	1.113	
KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	KPUEB Amplificación proporcional [p.u] 0.1 TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	LSEXn Parámetro Xn [p.u]	0.0693	
TIUEB Constante de tiempo integral [p.u] 4. DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	TIUEB Constante de tiempo integral [p.u] 4. DESWD Limite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	DESW Limite estacionario del ángulo de carga [p.u]	1.29	×
DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5	DESWD Límite diferencial del ángulo de carga [p.u] 2. KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	KPUEB Amplificación proporcional [p.u]	0.1	8
KDUEB Amplificación derivativa [p.u] 1.5	KDUEB Amplificación derivativa [p.u] 1.5 TDUEB Constante de tiempo derivativa [p.u] 3.	TIUEB Constante de tiempo integral [p.u]	4.	
	TDUEB Constante de tiempo derivativa [p.u] 3.	DESWD Limite diferencial del ángulo de carga [p.u]	2.	8
TDUEB Constante de tiempo derivativa [p.u] 3.		KDUEB Amplificación derivativa [p.u]	1.5	
	Flag Define si está activo el limitador [] 1.	TDUEB Constante de tiempo derivativa [p.u]	3.	-03 -08
Flag Define si está activo el limitador []		Flag Define si está activo el limitador []	1.	
				MILES SE
			i de la companie de	٢

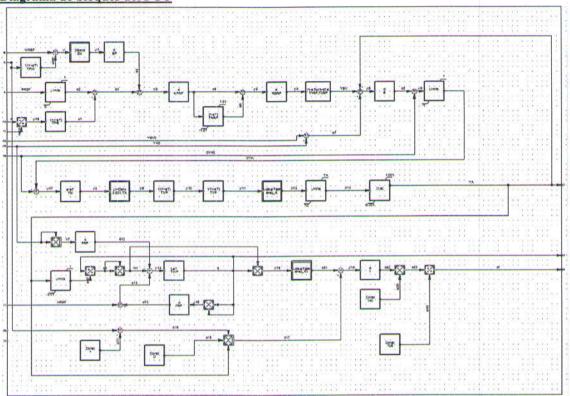
Diagrama de bloques del limitador VHz



Parámetros del limitador VHz

Parámetro	Valor	Unidad	Descripción
KPF	0	[p.u]	Ganancia proporcional del controlador PI - Lazo frecuencia
TIF	2.49	[s]	Constante de tiempo integral del controlador PI - Lazo frecuencia
KF1	0	[p.u]	ganancia del limitador
TFW	0.02	[s]	Filtro de velocidad
TFVT	0.008	[p.u]	Filtro de la señal de tensión
PI1_min	-0.5	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 1
PI2_min	0	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 2
VHz1_min	-0.5	[p.u]	Limitador inferior del VHz - Lazo 1
VHz2_min	0	[p.u]	Limitador inferior del VHz - Lazo 2
PI1_max	0	[p.u]	Limitador superior del integrador del controlador PI - Lazo 1
PI2_max	0.2	[p.u]	Limitador superior del integrador del controlador PI - Lazo 2
VHz1_max	0	[p.u]	Limitador superior del VHz - Lazo 1
VHz2_max	0.2	[p.u]	Limitador superior del VHz - Lazo 2

K_1_x	K_1_y	K_2_x	K_2_y
0	0	0	0
1	1.0801	1	0.9253



Parámetros del PSS

Parámetro	Valor	Unidad	Descripción	
Tw2	4.2202	[s]	Constante de tiempo de filtro washout	
Tpe	0.02	[s]	Constante de tiempo del filtro de potencia eléctrica	
Т6	0.02	[s]	Constante de tiempo de filtro transductor desviación de frecuencia	
Tw1	4.2202	[s]	Constante de tiempo de filtro washout	
Ks2	1	[s]	Ganancia de filtro del PSS	
T7	0.0201	[s]	Constante de tiempo de filtro acondicionador de potencia eléctrica	
Tw4	4.2202	[s]	Constante de tiempo de filtro washout	
Ks3	1	[p.u]	Factor de acoplamiento de señales	
T8	3.2002	[s]	Constante de tiempo de filtro rastreador de rampa	
Т9	0.6401	[s]	Constante de tiempo de filtro rastreador de rampa	
Ks1	0.35	[p.u]	Ganancia del PSS	
T1	0.0098	[s]	Constante de tiempo del compensador de fase	
T2	0.009801	[s]	Constante de tiempo del compensador de fase	
T3	0.0098	[s]	Constante de tiempo del compensador de fase	
T4	0.009801	[s]	Constante de tiempo del compensador de fase	
Twf	0.02	[s]	Constante de tiempo del filtro de velocidad	
Flag	1	[p.u]	Bandera para inhibir o activar operación del PSS	

Parámetro	Valor	Unidad	Descripción	53.
Tw5	4.2202	[s]	Constante de tiempo de filtro washout	
Vsmin	-0.01	[p.u]	Mínimo valor de la señal de salida del PSS	
Vsmax	0.01	[p.u]	Máximo valor de la señal de salida del PSS	

Diagrama de bloques del PCU

Parámetros o	del P	CU
--------------	-------	----

Parámetro	Valor	Unidad	Descripción
ZM	0.001	[pu]	Zona Muerta
TPW	0	[seg]	Constante de tiempo del integrador
EP	20	[pu]	Estatismo
TPE	0.5	[s]	Constante de tiempo del filtro de P
KPRP	1	[pu]	Ganancia
TNRP	10	[seg]	Constante de tiempo del integrador
KGRP	1	[pu]	Ganancia del compensador
T1RP	0	[s]	Constante de tiempo del compensador
T2RP	0.05	[s]	Constante de tiempo del compensador
TM	0.15	[s]	Tiempo Muerto
TVP	0.02	[s]	Consante de tiempo de filtro de válvula piloto
FRP	0	[pu]	Ganancia
TWP	0.04	[s]	Constante de tiempo de integrador
TX	10	[s]	Consante de tiempo del limitador de velocidad
D	0.1	[pu]	Ganancia

Parámetro	Valor	Unidad	Descripción	
TC	-0.01087	[pu]	Límite cierre	
TA	0.012891	[pu]	Límite apertura	

Tabla Zona Muerta y ganancia hidráulica

K_x	К_у
-1.15	-0.028
-0.5	-0.014
-0.02	-0.001
-0.01	-0.0005
0	0
0.01	0.0005
0.02	0.001
0.5	0.014
0.85	0.028

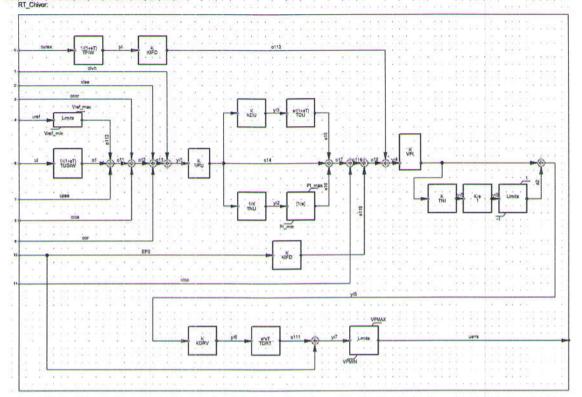
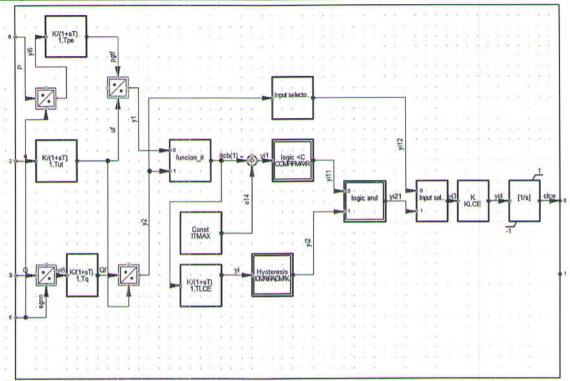

Tabla apertura - Potencia

Tabla aperti	ira - i otelicia
K1_x	K1_y
0	-0.0414
0.1	0.12714
0.2	0.28248
0.3	0.42462
0.4	0.55356
0.48	0.647208
0.585	0.7573005
0.67	0.835764
0.76	0.908448
0.83	0.957588

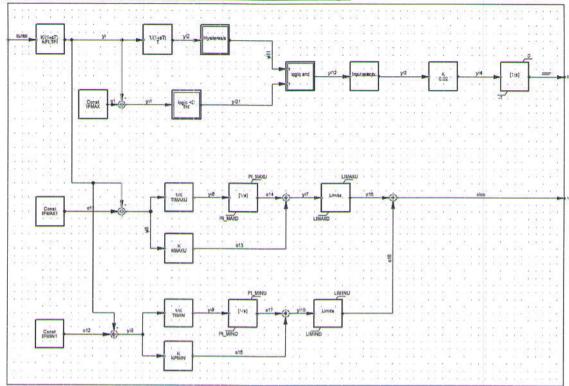
Nota: En Digsilent se construye un arreglo de 1001 datos a partir de la información reportada por el agente para mejorar respuesta inicial del modelo

Unidad Chivor 3:


Diagrama de bloques del AVR:

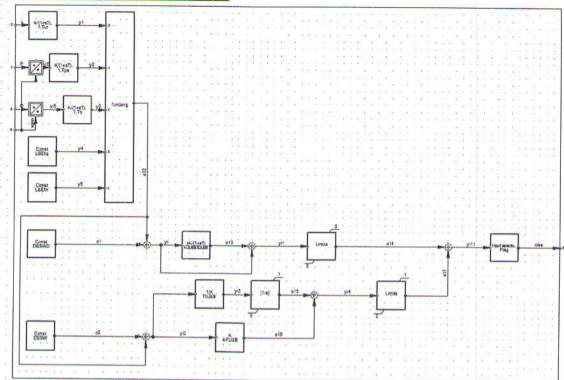
Parámetros del AVR:

	Parameter	
►KIFD Ganancia del filtro para la medición de la corrient		_
VPU Amplificación proporcional [p.u]	6.5	
KDU Amplificación derivativa [p.u]	0.	
TNU Constante de tiempo integral [s]	0.25	
TDU Constante de tiempo derivativa [s]	0.0059	
VPI Amplificación proporcional [p.u]	1.6631	
TNI Constante de tiempo integral [s]	0.	
TFIW Constante de tiempo del filtro para la medición d	0.00202	
TUGIW Constante de tiempo del filtro para medición de	0.0059	
KDRV Ganancia del Driver [p.u]	5.5	
TDRT Tiempo muerto [s]	0.001	
Vref_min Limitador inferior de la tensión de referencia [p	0.9272	8.8
Pl_min Limitador inferior del integrador del controlador P	-0.45	
VPMIN Limitador del Ceiling mínimo [p.u]	-4.84	
Vref_max Limitador superior de la tensión de referencia	1.0801	
PI_max Limitador superior del integrador del controlador	0.45	
VPMAX Limitador del Ceiling máximo [p.u]	5.5	Y
	100	


Diagrama de bloques del Limitador de Corriente Estatórica:

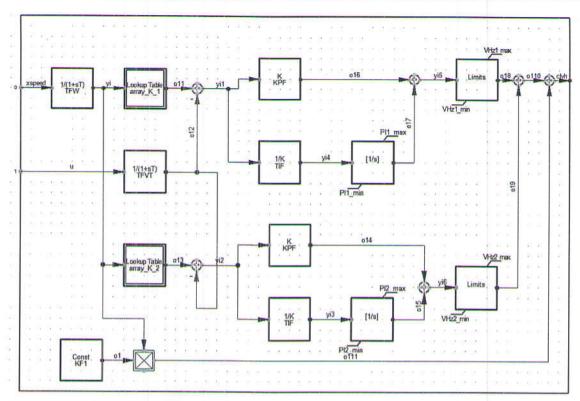
Parámetros del Limitador de Corriente Estatórica:

	Parameter	-
Tpe Constante de tiempo del filtro de medicion de Pot	0.02	1
Tut Constante de tiempo del filtro de medicion del volt	0.0059	Ī
Tq Constante de tiempo del filtro de medicion de Pote	0.02	
ITMAX Máxima contente estátorica [p.u]	1.	-
TLCE Retardo [s]	15.	200
IGMAXRA Umbral superior [p.u]	-0.015	
IGMAXRB Umbral inferior [p.u]	-0.02	200
KLCE Ganancia del LCE [s]	0.025	S. Le
COMPIFMAXR Comparador [p.u]	-0.015	0
		1000 A 2000
		1
)	ſ


Diagrama de bloques de Limitadores de Corriente de Campo

Parámetros de Limitadores de Corriente de Campo

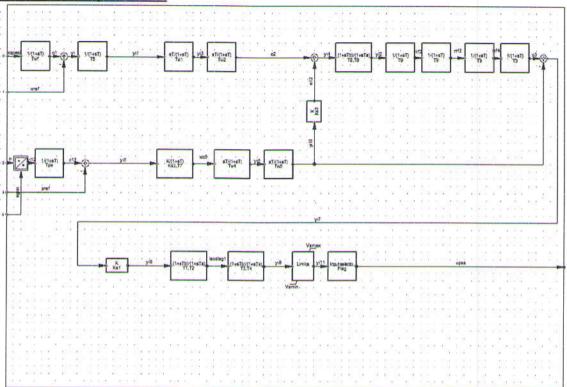
Parámetro	Valor	Unidad	Descripción
IFMAX	2.045	[p.u]	Referencia de máxima corriente de campo con retardo
ThI	-0.03	[p.u]	Comparador
IFMAX1	2.3	[p.u]	Referencia de máxima corriente de campo
KMAXU	3	[p.u]	Ganancia del controlador PI - Limitador de máxima corriente de campo
TIMAXU	0.04	[s]	Constante de tiempo del controlador PI - Limitador de máxima corriente de campo
IFMIN1	0.3	[p.u]	Referencia de mínima corriente de campo
TIMIN	0.0601	[s]	Constante de tiempo del controlador PI - Limitador de mínima corriente de campo
KPMIN	4	[p.u]	Ganancia del controlador PI - Limitador de mínima corriente de campo
Т	3	[p.u]	Constante de tiempo del lazo limitador de máxima corriente de campo con retardo
KFI	1	[p.u]	Ganancia del filtro de la corriente de excitación
TFI	0.00202	[s]	Constante de tiempo del filtro de la corriente de excitación
PI_MAXD	-1	[p.u]	Límite inferior del integrador del controlador PI - Limitador de máxima corriente de campo
LIMAXD	-1	[p.u]	Límite inferior del lazo limitador de máxima corriente de campo
PI_MIND	0	[p.u]	Límite inferior del integrador del controlador PI - Limitador de mínima corriente de campo
LIMIND	0	[p.u]	Límite inferior del lazo limitador de mínima corriente de campo
PI_MAXU	0	[p.u]	Límite superior del integrador del controlador PI - Limitador de máxima corriente de campo
LIMAXU	0	[p.u]	Límite superior del lazo Limitador de máxima corriente de campo
PI_MINU	1	[p.u]	Límite superior del integrador del controlador PI - Limitador de mínima corriente de campo
LIMINU	1	[p.u]	Límite superior del lazo Limitador de mínima corriente de campo


Diagrama de bloques del limitador LPQ

Parámetros del limitador LPO

	Parameter	
Tut Constante de tiempo del filtro de voltaje [s]	0.0059	_
Tpe Constante de tiempo del filtro de potencia activa [s]	0.02	
Tq Constante de tiempo del filtro de potencia reactiva	0.02	
LSEXq Parámetro Xq [p.u]	1.113	
LSEXn Parámetro Xn [p.u]	0.0693	
DESW Límite estacionario del ángulo de carga [p.u]	1.27	
KPUEB Amplificación proporcional [p:u]	0.1	8
TIUEB Constante de tiempo integral [p.u]	4.	
DESWD Límite diferencial del ángulo de carga [p.u]	2.	
KDUEB Amplificación derivativa [p.u]	1.5	
TDUEB Constante de tiempo derivativa [p.u]	3.	•30X•]
Exq Parámetro Xq [p.u] Exn Parámetro Xn [p.u] Exn Parámetro Xn [p.u] EW Límite estacionario del ángulo de carga [p.u] JEB Amplificación proporcional [p.u] EB Constante de tiempo integral [p.u] EWD Límite diferencial del ángulo de carga [p.u] JEB Amplificación derivativa [p.u]	1.	

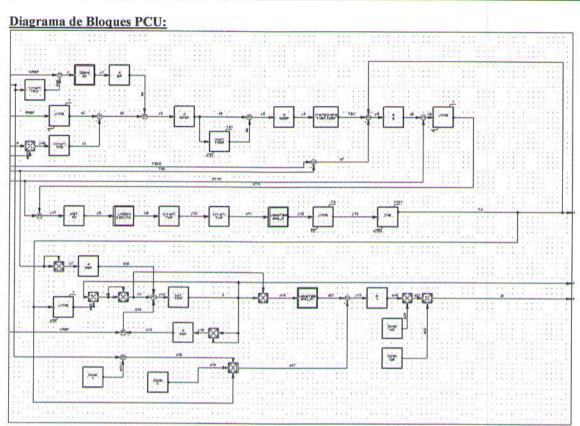
Diagrama de bloques del limitador VHz



Parámetros del limitador VHz

Parámetro	Valor	Unidad	Descripción	
KPF	0	[p.u]	Ganancia proporcional del controlador PI - Lazo frecuencia	
TIF	2.49	[s]	Constante de tiempo integral del controlador PI - Lazo frecuencia	
KF1	0	[p.u]	ganancia del limitador	
TFW	0.02	[s]	Filtro de velocidad	
TFVT	0.008	[p.u]	Filtro de la señal de tensión	
PI1_min	-0.5	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 1	
PI2_min	0	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 2	
VHz1_min	-0.5	[p.u]	Limitador inferior del VHz - Lazo 1	
VHz2_min	0	[p.u]	Limitador inferior del VHz - Lazo 2	
PI1_max	0	[p.u]	Limitador superior del integrador del controlador PI - Lazo 1	
PI2_max	0.2	[p.u]	Limitador superior del integrador del controlador PI - Lazo 2	
VHz1_max	0	[p.u]	Limitador superior del VHz - Lazo 1	
VHz2_max	0.2	[p.u]	Limitador superior del VHz - Lazo 2	

K_1_x	K_1_y	K_2_x	K_2_y
0	0	0	0
1	1.0801	1	0.9253


Diagrama de bloques del PSS

Parámetros del PSS

Parámetro	Valor	Unidad	Descripción	
Tw2	4.2202	[s]	Constante de tiempo de filtro washout	
Tpe	0.02	[s]	Constante de tiempo del filtro de potencia eléct	rica
Т6	0.02	[s]	Constante de tiempo de filtro transductor desvia frecuencia	ación de
Tw1	4.2202	[s]	Constante de tiempo de filtro washout	
Ks2	1	[s]	Ganancia de filtro del PSS	
T7	0.0201	[s]	Constante de tiempo de filtro acondicionador de eléctrica	potencia
Tw4	4.2202	[s]	Constante de tiempo de filtro washout	274
Ks3	1	[p.u]	Factor de acoplamiento de señales	
T8	3.2002	[s]	Constante de tiempo de filtro rastreador de ram	pa
Т9	0.6401	[s]	Constante de tiempo de filtro rastreador de ram	pa
Ks1	0.35	[p.u]	Ganancia del PSS	
T1	0.0098	[s]	Constante de tiempo del compensador de fase	
T2	0.009801	[s]	Constante de tiempo del compensador de fase	
T3	0.0098	[s]	Constante de tiempo del compensador de fase	
T4	0.009801	[s]	Constante de tiempo del compensador de fase	
Twf	0.02	[s]	Constante de tiempo del filtro de velocidad	
Flag	1	[p.u]	Bandera para inhibir o activar operación del PSS	
Tw5	4.2202	[s]	Constante de tiempo de filtro washout	

Parámetro	Valor	Unidad	Descripción	
Vsmin	-0.01	[p.u]	Mínimo valor de la señal de salida del PSS	
Vsmax	0.01	[p.u]	Máximo valor de la señal de salida del PSS	

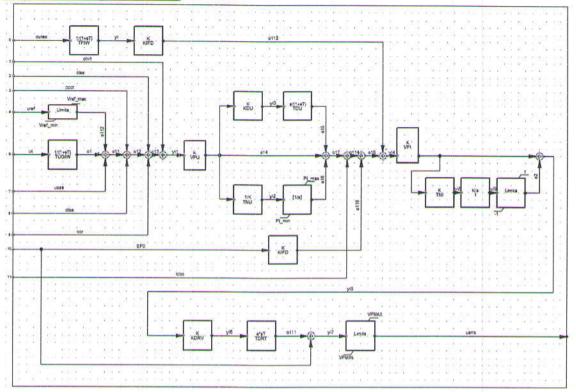
Done	mad	mag	dol	PCL	r
Para	ımeı	ros	aei		

Parámetro	Valor	Unidad	Descripción	
ZM	0.001	[pu]	Zona Muerta	
EP	20	[pu]	Estatismo	
TPE	0.5	[s]	Constante de tiempo del filtro de P	
KPRP	1	[pu]	Ganancia	
TNRP	10	[seg]	Constante de tiempo del integrador	
KGRP	1	[pu]	Ganancia del compensador	
T1RP	0	[s]	Constante de tiempo del compensador	
T2RP	0.05	[s]	Constante de tiempo del compensador	
TM	0.188	[s]	Tiempo Muerto	
TVP	0.02	[s]	Consante de tiempo de filtro de válvula piloto	
FRP	0	[pu]	Ganancia	
TWP	0.04	[s]	Constante de tiempo de integrador	
TX	10	[s]	Consante de tiempo del limitador de velocidad	
D	0.1	[pu]	Ganancia	
TPW	0.034	[seg]	Constante de tiempo del integrador	
TC	-0.01288	[pu]	Límite cierre	

Parámetro	Valor	Unidad	Descripción	
TA	0.020173	[pu]	Límite apertura	

Tabla Zona Muerta y ganancia hidráulica

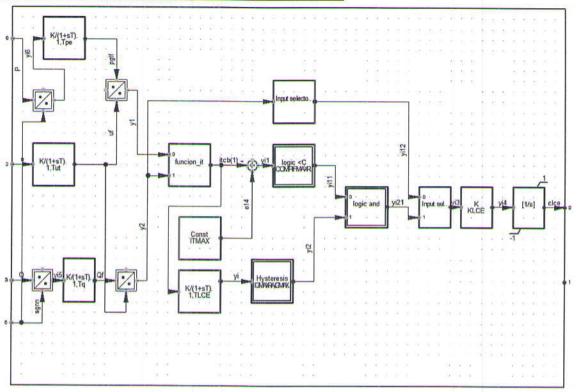
K_x	К_у
-1.15	-0.028
-0.5	-0.014
-0.02	-0.001
-0.01	-0.0005
0	0
0.01	0.0005
0.02	0.001
0.5	0.014
0.85	0.028


Tabla Apertura - Potencia

A STATE AND A COLUMN	te L'Occinente
K1_x	K1_y
0	-0.0337
0.1	0.129196
0.2	0.279524
0.3	0.417284
0.4	0.542476
0.48	0.63358064
0.585	0.74094881
0.67	0.81771724
0.76	0.88910416
0.83	0.93758924

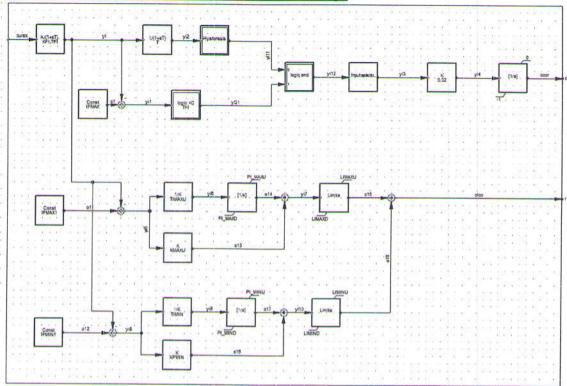
Nota: En Digsilent se construye un arreglo de 1001 datos a partir de la información reportada por el agente para mejorar respuesta inicial del modelo

Unidad Chivor 4:


Diagrama de bloques del AVR:

Parámetros del AVR:

	Parameter	
KIFD Ganancia del filtro para la medición de la corrient	1.	4
VPU Amplificación proporcional [p.u]	5.	
KDU Amplificación derivativa [p.u]	0.	
TNU Constante de tiempo integral [s]	0.25	108
TDU Constante de tiempo derivativa [s]	0.0059	×
VPI Amplificación proporcional [p.u]	3.	
TNI Constante de tiempo integral [s]	0.	
TFIW Constante de tiempo del filtro para la medición d	0.002	
TUGIW Constante de tiempo del filtro para medición de	0.0059	
KDRV Ganancia del Driver [p.u]	5.5	8:
TDRT Tiempo muerto [s]	0.001	
Vref_min Limitador inferior de la tensión de referencia [p	0.9272	
PI_min Limitador inferior del integrador del controlador P	-0.45	9
VPMIN Limitador del Ceiling mínimo [p.u]	-4.5	
Vref_max Limitador superior de la tensión de referencia	1.0801	XX
PI_max Limitador superior del integrador del controlador	0.45	2
VPMAX Limitador del Ceiling máximo [p.u]	5.	7


Diagrama de bloques del limitador de Corriente Estatórica:

Parámetros del Limitador de Corriente Estatórica:

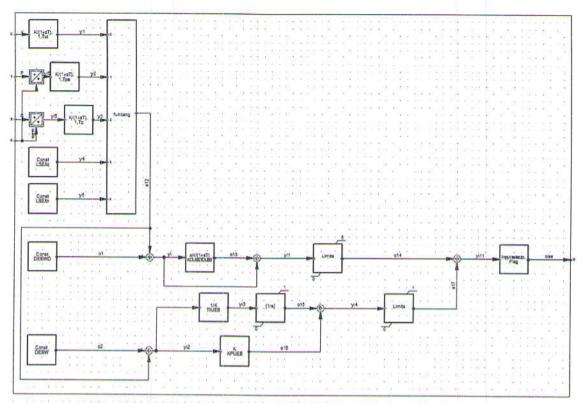
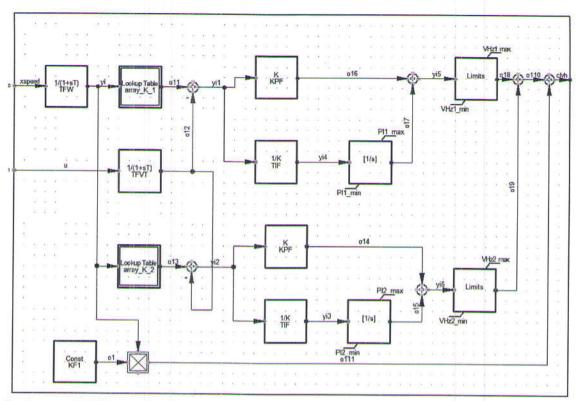

	Parameter	
Tpe Constante de tiempo del filtro de medicion de Pot	0.02	-
Tut Constante de tiempo del filtro de medicion del volt	0.0059	
Tq Constante de tiempo del filtro de medicion de Pote	0.02	
ITMAX Máxima comente estátorica [p.u]	1.	
TLCE Retardo [s]	23.2	8
IGMAXRA Umbral superior [p.u]	-0.0085	X
IGMAXRB Umbral inferior [p.u]	-0.08	X
KLCE Ganancia del LCE [s]	0.025	
COMPIFMAXR Comparador [p.u]	-0.009	
	(a)	

Diagrama de bloques de Limitadores de Corriente de Campo

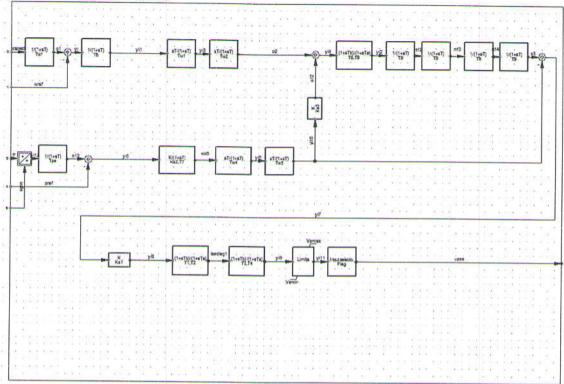
Parámetros de Limitadores de Corriente de Campo


Parámetro	Valor	Unidad	Descripción			
IFMAX	2.03	[p.u]	Referencia de máxima corriente de campo con retardo			
ThI	-0.03	[p.u]	mparador			
IFMAX1	2.3	[p.u]	Referencia de máxima corriente de campo			
KMAXU	3	[p.u]	Ganancia del controlador PI - Limitador de máxima corriente de campo			
TIMAXU	0.04	[s]	Constante de tiempo del controlador PI - Limitador de máxima corriente de campo			
IFMIN1	0.34	[p.u]	Referencia de mínima corriente de campo			
TIMIN	0.0601	[s]	Constante de tiempo del controlador PI - Limitador de mínima corriente de campo			
KPMIN	4	[p.u]	Ganancia del controlador PI - Limitador de mínima corriente de campo			
Т	6.3	[p.u]	enstante de tiempo del lazo limitador de máxima corriente de campo con retardo			
KFI	1	[p.u]	nancia del filtro de la corriente de excitación			
TFI	0.00202	[s]	nstante de tiempo del filtro de la corriente de excitación			
PI_MAXD	-1	[p.u]	nite inferior del integrador del controlador PI - Limitador de máxima corriente de can			
LIMAXD	-1	[p.u]	Límite inferior del lazo limitador de máxima corriente de campo			
PI_MIND	0	[p.u]	Límite inferior del integrador del controlador PI - Limitador de mínima corriente de campo			
LIMIND	0	[p.u]	Límite inferior del lazo limitador de mínima corriente de campo			
PI_MAXU	0	[p.u]	Límite superior del integrador del controlador PI - Limitador de máxima corriente de campo			
LIMAXU	0	[p.u]	Límite superior del lazo Limitador de máxima corriente de campo			
PI_MINU	1	[p.u]	ímite superior del integrador del controlador PI - Limitador de mínima corriente de campo			
LIMINU	1	[p.u]	Límite superior del lazo Limitador de mínima corriente de campo			

Parámetros del limitador LPQ

	Parameter	
Tut Constante de tiempo del filtro de voltaje [s]	0.0059	-
Tpe Constante de tiempo del filtro de potencia activa [s]	0.02	
Tq Constante de tiempo del filtro de potencia reactiva	0.02	1
LSEXq Parámetro Xq [p.u]	1.113	100
LSEXn Parámetro Xn [p.u]	0.0693	
DESW Límite estacionario del ángulo de carga [p.u]	1.26	0.000
KPUEB Amplificación proporcional [p.u]	0.1	500
TIUEB Constante de tiempo integral [p.u]	4.	
DESWD Límite diferencial del ángulo de carga [p.u]	2.	
KDUEB Amplificación derivativa [p.u]	1.5	10000
TDUEB Constante de tiempo derivativa [p.u]	3.	
Flag Define si está activo el limitador []	1.	

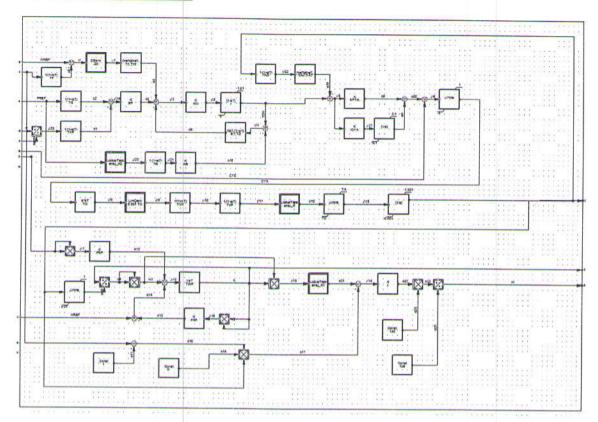
Diagrama de bloques del limitador VHz



Parámetros del Limitador VHz

Parámetro	Valor	Unidad	Descripción	
KPF	0	[p.u]	Ganancia proporcional del controlador PI - Lazo frecuencia	
TIF	2.49	[s]	Constante de tiempo integral del controlador PI - Lazo frecuenc	
KF1	0	[p.u]	ganancia del limitador	
TFW	0.02	[s]	Filtro de velocidad	
TFVT	0.008	[p.u]	Filtro de la señal de tensión	
PI1_min	-0.5	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 1	
PI2_min	0	[p.u]	Limitador inferior del integrador del controlador PI - Lazo 2	
VHz1_min	-0.5	[p.u]	Limitador inferior del VHz - Lazo 1	
VHz2_min	0	[p.u]	Limitador inferior del VHz - Lazo 2	
PI1_max	0	[p.u]	Limitador superior del integrador del controlador PI - Lazo 1	
PI2_max	0.2	[p.u]	Limitador superior del integrador del controlador PI - Lazo 2	
VHz1_max	0	[p.u]	Limitador superior del VHz - Lazo 1	
VHz2_max	0.2	[p.u]	Limitador superior del VHz - Lazo 2	

K_1_x	K_1_y	K_2_x	K_2_y
0	0	0	0
1	1.0801	1	0.9253



Parámetros del PSS

Parámetro	Valor	Unidad	Descripción	
Tw2	4.2202	[s]	Constante de tiempo de filtro washout	
Tpe	0.02	[s]	Constante de tiempo del filtro de potencia eléctrica	
T6	0.02	[s]	Constante de tiempo de filtro transductor desviación de frecuencia	
Tw1	4.2202	[s]	Constante de tiempo de filtro washout	
Ks2	1	[s]	Ganancia de filtro del PSS	
T7	0.0201	[s]	Constante de tiempo de filtro acondicionador de potencia eléctrica	
Tw4	4.2202	[s]	Constante de tiempo de filtro washout	
Ks3	1	[p.u]	Factor de acoplamiento de señales	
Т8	3.2002	[s]	Constante de tiempo de filtro rastreador de rampa	
Т9	0.6401	[s]	Constante de tiempo de filtro rastreador de rampa	
Ks1	0.35	[p.u]	Ganancia del PSS	
T1	0.0098	[s]	Constante de tiempo del compensador de fase	
T2	0.009801	[s]	Constante de tiempo del compensador de fase	
T3	0.0098	[s]	Constante de tiempo del compensador de fase	
T4	0.009801	[s]	Constante de tiempo del compensador de fase	
Twf	0.02	[s]	Constante de tiempo del filtro de velocidad	
Flag	1	[p.u]	Bandera para inhibir o activar operación del PSS	
Tw5	4.2202	[s]	Constante de tiempo de filtro washout	
Vsmin	-0.01	[p.u]	Mínimo valor de la señal de salida del PSS	
Vsmax	0.01	[p.u]	Máximo valor de la señal de salida del PSS	

Diagrama de Bloques del PCU

Parámetros del PCU

Parámetro	Valor	Unidad	Descripción
ZM	0.0005	[pu]	Zona Muerta
TF	0.034	[seg]	Filtro Pasa baja
Tn	1.8	[s]	Constante de tiempo del acelerómetro
Tn1	0.18	[s]	Constante de tiempo del acelerómetro
TG	3	[s]	Constante de tiempo del filtro
TFP	0.2	[s]	Constante de tiempo del filtro
KW	80	[pu]	Ganancia del servo virtual
KPYA	100	[pu]	Constante proporcional
TM	0.15	[s]	Tiempo muerto
TVP	0.02	[s]	Filtro válvula piloto
FRP	0	[pu]	Ganancia
TWP	0.04	[s]	Constante de tiempo integrador
TX	10	[s]	Constante de tiempo del limitador de tasa
D	0.1	[pu]	Ganancia
BP	0.05	[pu]	Estatismo
ВТ	0.6	[pu]	Estatismo transitorio
TD	10	[s]	Constante derivativa

Parámetro	Valor	Unidad	Descripción	
TR	1.3	[s]	Constante de tiempo del filtro rampeador	
KR	1	[pu]	Ganancia del filtro rampeador	
TAG	0.005	[s]	Constante de tiempo filtro control posición agujas	
TAV	0.035	[s]	Constante de tiempo filtro control posición agujas	
TAT	0.01	[s]	Constante de tiempo filtro control posición agujas	
KIYA	12	[pu]	Constante integral	
TC	-0.00698944	[p.u]	Límite Cierre	
TA	0.02910345	[p.u]	Límite Apertura	

Tabla Zona Muerta y ganancia hidráulica:

K_x	К_у		
-1.15	-0.028		
-0.5	-0.014		
-0.02	-0.001		
-0.01	-0.0005		
0	0		
0.01	0.0005		
0.02	0.001		
0.5	0.014		
0.85	0.028		

Tabla Potencia - Apertura , Apertura - Potencia

K1_x	K1_y	K2_x	K2_y	
0	-0.0285	-0.0285	0	
0.1	0.130359	0.130359	0.1	
0.2	0.276416	0.276416	0.2	
0.3	0.409671	0.409671	0.3	
0.4	0.530124	0.530124	0.4	
0.48	0.617269	0.617269	0.48	
0.585	0.7192128	0.7192128	0.585	
0.67	0.7914011	0.7914011	0.67	
0.76	0.8577542	0.8577542	0.76	
0.83	0.9021931	0.9021931	0.83	

Nota: En Digsilent se construye un arreglo de 1001 datos a partir de la información reportada por el agente para mejorar respuesta inicial del modelo

Parámetros de Generador Unidades 1, 2, 3 y 4 de la Central Chivor

Parámetros	Unidad 1	Unidad 2	Unidad 3	Unidad 4	Unidad de medida
Potencia Aparente Nominal - S	140	140	140	140	MVA
Voltaje nominal - Vn	13.8	13.8	13.8	13.8	kV
Factor de potencia – fp	0.9	0.9	0.9	0.9	
Constante de inercia - H	4.455	5.38	5.38	4.375	S
Resistencia de estator - rstr	0.0017	0.0017	0.0017	0.0017	p.u
Reactancia de dispersión - xl	0.1703	0.178	0.178	0.16	p.u
Tipo de de Rotor	Polos salientes	Polos salientes	Polos salientes	Polos salientes	
Reactancia sincrónica eje directo - Xd	0.9495	0.93	0.93	0.94	p.u
Reactancia sincrónica eje cuadratura – Xq	0.91	0.28	0.28	0.8	p.u
Reactancia transitoria eje directo – X'd	0.181	0.18	0.18	0.19	p.u
Reactancia subtransitoria eje directo – X"d	0.178	0.17957	0.17957	0.17	p.u
Reactancia subtransitoria eje cuadratura – X"q	0.178	0.1796	0.17957	0.17	p.u
Constante de tiempo transitoria de circuito abierto eje directo Td0'	7.5	6.8	6.8	7.45	s
Constante de tiempo subtransitoria de circuito abierto eje directo Td0''	0.002	0.002	0.002	0.02137	s
Constante de tiempo subtransitoria de circuito abierto eje cuadratura Tq0''	0.25	0.2	0.2	0.133	s
Parámetro de saturación a ETERM = 1.0 p.u - S 1.0	0.06321155	0.104057	0.1369606	0.1090877	p.u
Parámetro de saturación a ETERM = 1.2 p.u - S 1.2	0.2402417	0.51268	0.3904053	0.4274472	p.u
Mechanical Damping	0	0	0	0	p.u