ANALISIS SITUACIÓN OPERATIVA PUNTOS DE CONEXIÓN EN SUBESTACIONES PROPIEDAD DE TRANSELCA

TRANSELCA

Documento GP 00784

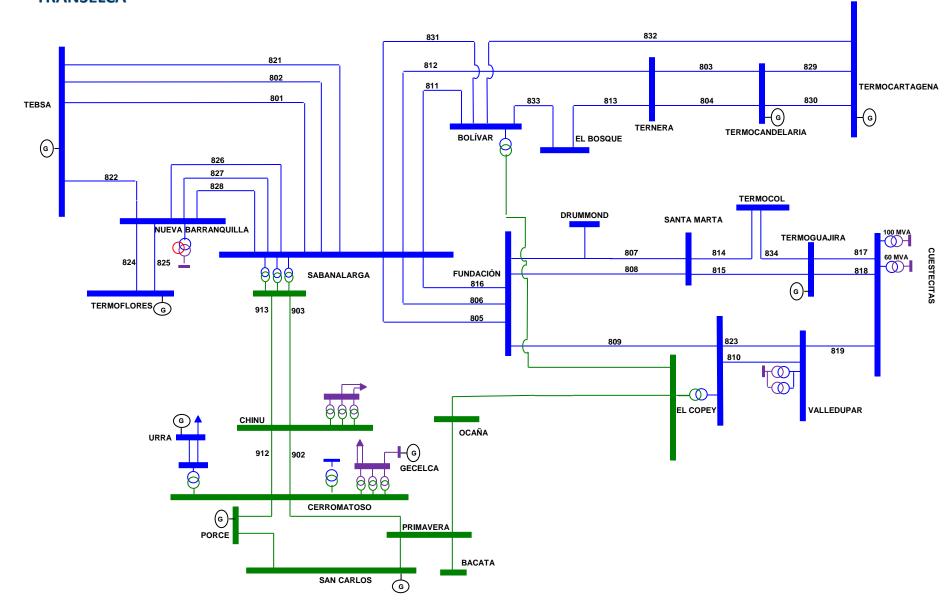
Mayo de 2015

SITUACIÓN OPERATIVA SUBESTACIONES TRANSELCA

OBJETIVOS

- Presentar un análisis de la situación operativa actual de los puntos de conexión del STR y SDL en las subestaciones propiedad de TRANSELCA, la característica de radialidad predominante y posibles racionamientos ante fallas en estos puntos de conexión tanto en magnitud como en tiempos de recuperación.
- Mostrar el nivel de cargabilidad actual de los transformadores de conexión de TRANSELCA.
- Mostrar la estadística de salidas forzadas de las celdas a 34,5kV y 13,8kV propiedad de TRANSELCA debidas a eventos en los circuitos que alimentan y su incidencia en el mayor riesgo de falla de los equipos aguas arriba.
- Proponer esquemas de reservas que permitan agilizar la recuperación principalmente de transformadores fallados.

SISTEMA DE TRANSMISIÓN NACIONAL Y PROYECTOS DE EXPANSIÓN APROBADOS POR UPME


COSTA ATLÁNTICA COLOMBIANA

Fuente de Gráfica: UPME

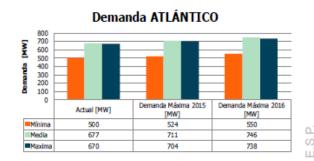
PROYECTOS DE EXPANSIÓN - ESTADO

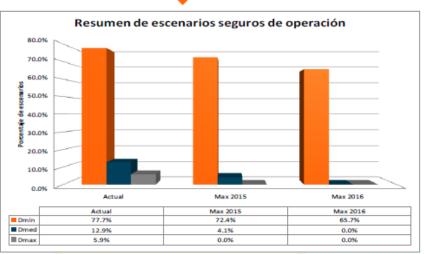
FECHAS PUESTA SERVICIO PROYECTOS STN COSTA ATLANTICA COLOMBIANA

SUBESTACIONES INVOLUCRADAS	STN/STR	PROYECTO	AÑO PUESTA EN SERVICIO (Plan Exp. UPME)	ESTADO	ADJUDICADO A
TERMOCOL	STN	Compensación Capacitiva 35MVAR 220kV	sep-15	Adjudicado	ISA
COPEY	STN	Segundo Transformador Copey 500/220kV 450MVA	nov-15	Ejecución	ISA
VALLEDUPAR	STN	Bahía Anillo 220kV y Compensación Capacitiva de 50 MVAR 220kV	nov-16	Adjudicado	ISA
RIO CORDOBA	STN	Nueva subestación 220kV int y medio	nov-16	Adjudicado	EEB
RIO CORDOBA	STR	Conectividad de la subestación Trf 220/110kV 2x100MVA	nov-16	Adjudicado	EEB
VALLEDUPAR	STN	Bahía Segundo transformador Valledupar 220/110kV 100MVA	nov-16	Adjudicado	ISA
VALLEDUPAR	STR	Conectividad d la subestación STN/STR mediante TRF 220/110kV 100MVA	nov-16	Selección	
CARACOLÍ	STN	Nueva subestación 220kV int y medio	nov-16	Adjudicado	ISA
		Circuito sencillo 220kV Termoflores - Caracolí	nov-16	Adjudicado	ISA
CARACOLÍ	STR	Conectividad de la subestación trf 220/110kV 2x150MVA y reconfiguración de líneas a 110kV Caracolí - Silencio, Caracolí - Cordialidad y Caracoli - Malambo	nov-16	Pre. Convoc	
		Reconfiguración Sub TEBSA Reemplazo TRF 180MVA por 100MVA y traslado generación de TEBSA a nueva barra a 220kV.	nov-16	Pre. Convoc	
NUEVA BARRANQUILLA	STR	Segundo Transformador NBQ 220/110/13,8kV 100/70/30MVA y bahías asociadas	nov-16	Pre. Convoc	
TERMOCARTAGENA - BOLIVAR	STN	Segundo circuito Termocartagena Bolívar 220kV	2016	Ejecución	EEB
CHINU, CERROMATOSO, COPEY	STN	Refuerzo Costa Atlántica Circuito 500kV		Adjudicado	ISA
	STN	Nueva subestación La Loma 500KV GIS	nov-16	Adiudicado	EEB
LA LOMA	STR	conectrividad TRF 500/110kV 2x150MVA y circuitos y La Loma - El Paso 110kV	nov-16	Pre. Convoc	
	STR	LA Loma - La Jagua	nov-18	Pre. Convoc	
CUESTECITA	STR	Tercer Trf 220/110kV 100MVA y bahias asociadas y cambio tfr 60MVA por 100MVA	nov-16	Pre. Convoc	
CUESTECITA	STN	Nueva Subestación 500kV Y TRF 500/220Kv 450MVA	nov-19	Pre. Convoc	
COPEY - CUESTECITA	STN	Circuito sencillo 500kV	nov-19	Pre. Convoc	
FUNDACIÓN - COPEY	STN	Segundo Circuito Fundación Copey 220kV	nov-19	Pre. Convoc	

La mayoría de proyectos del STR están atrasados inclusive con relación a las fechas del mismo proyecto en el STN.

Las fechas de puesta en operación de los proyectos de expansión que cobijan activos en el STR, estarán sujetas a las propuestas presentadas por los oferentes una vez sean adjudicadas las respectivas convocatorias.

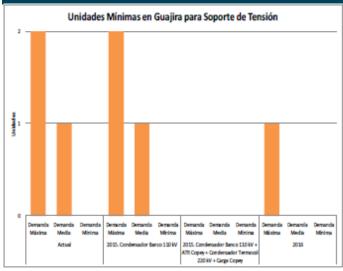

Atrasos de algunos de estos proyectos ocasionarán condiciones riesgosas de operación, como se puede observar en las siguiente diapositiva.

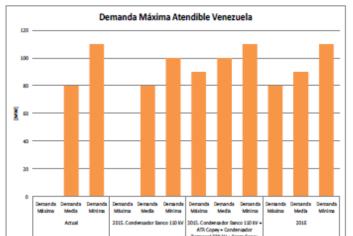

INFORME PLANEAMIENTO OPERATIVO ELÉCTRICO MEDIANO PLAZO PRIMER TRIMESTRE 2015 REALIZADO POR CND

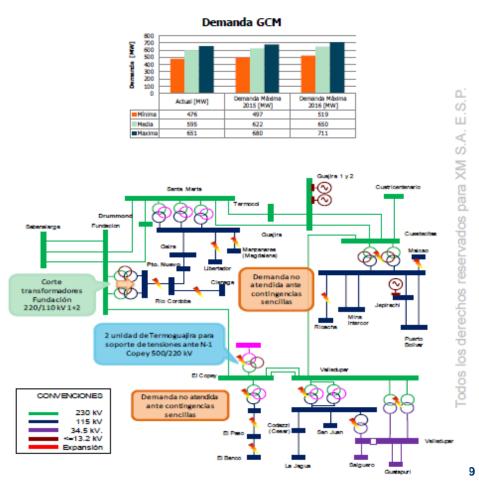
Subárea Atlántico

1

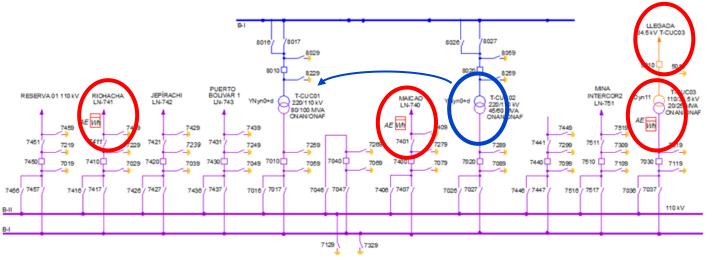
Baio los supuestos considerados, para demanda máxima del 2015 demanda media máxima del 2016, no se despachos observan factibles de la generación subárea de aue permitan el cubrimiento de las contingencias N-1 del STR de la subárea.


Todos los derechos reservados para XM S.A. E.S.




INFORME PLANEAMIENTO OPERATIVO ELÉCTRICO MEDIANO PLAZO PRIMER TRIMESTRE 2015 REALIZADO POR CND

Condición operativa GCM

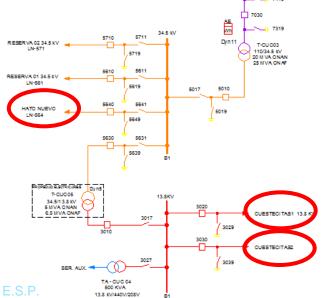


UNIFILARES SUBESTACIONES PROPIEDAD DE TRANSELCA

CARGAS ALIMENTADAS RADIALMENTE Y TRANSFORMADORES QUE ANTE FALLA GENERAN SOBRECARGAS Y POSIBLES SALIDAS EN TRANSFORMADORES EN PARALELO

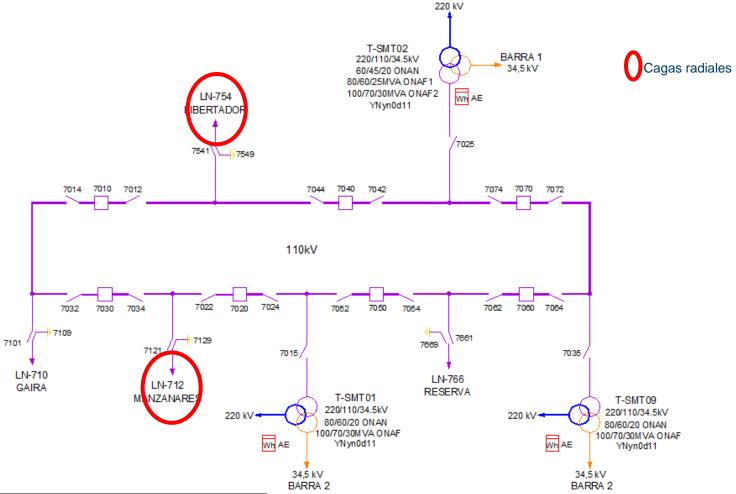
UNIFILARES SUBESTACIONES TRANSELCA Subestación Cuestecita

C	Cagas radiales
C	Genera salida paralelo

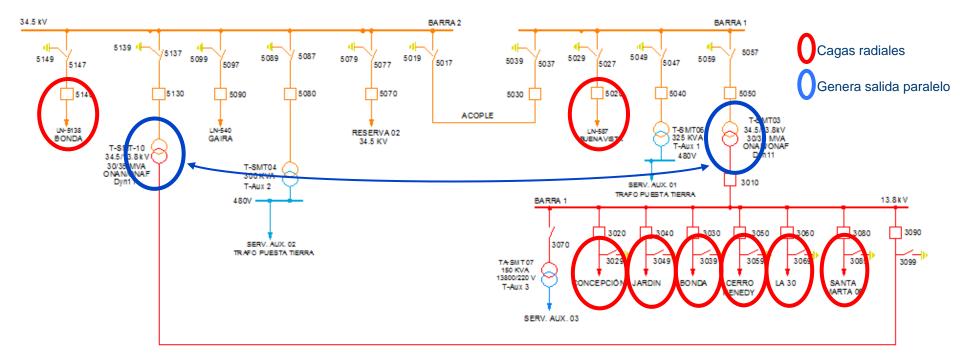

7037

7036

BARRA


BARRAII

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		LN-740	26.00
	110KV	LN-741	43.00
		T-CUC03 110/34.5KV	15.00
CUESTECITA	34.5KV 13.8kV	LN-564	14.41
		T-CUC05 34.5/13.8KV	4.00
		CUC-01	2.40
		CUC-02	2.09


UNIFILARES SUBESTACIONES TRANSELCA Subestación Santa Marta

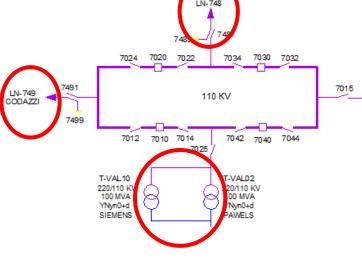
SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
SMT	110KV	LN-712	32.00
		LN-754	43.00

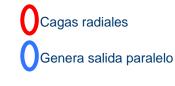
UNIFILARES SUBESTACIONES TRANSELCA Subestación Santa Marta

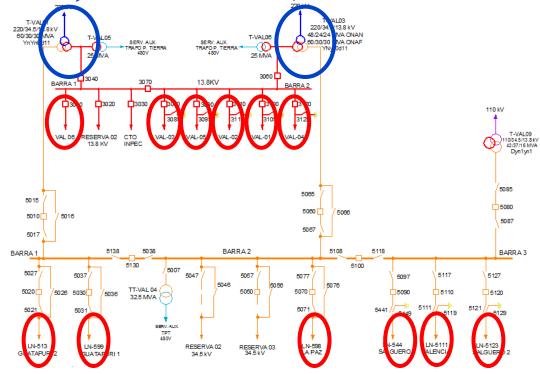
SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		T-SMT03 34.5/13.8KV	19.00
	34.5KV	T-SMT10 34.5/13.8KV	19.00
	34.3KV	LN-587	4.92
		LN-5138	4.82
SMT	13.8kV	CONCEPCION	9.59
SIVII		JARDIN	9.82
		BONDA	8.05
		CERRO KENNEDY	2.22
		LA 30	9.36
		SMT-06	6.52

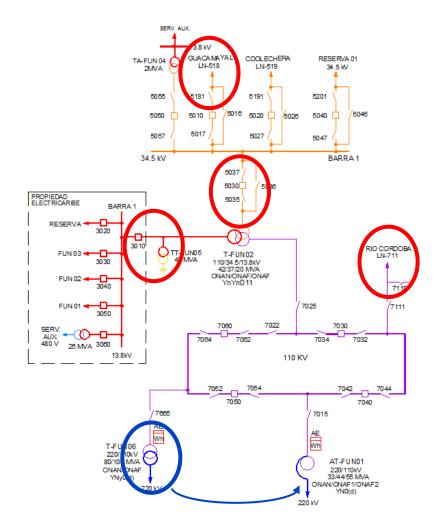
UNIFILARES SUBESTACIONES TRANSELCA Subestación Copey

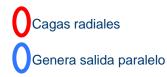
T-COP01 220/110/34.5 kV 60/45/20 ONAN 80/60/25MVA ONAI 100/70/30 ONAF2 YNyn0d11	5010 5017 34.5 KV	5020	7	T-C0P02 k4.5/13.8 kV MVA ONAN YNyn(d11)
	5901 N-590 TT - 0	5937 5930 5919 U COP 03 LN-5 KVA BOSC	BARRA 1 / 5917 BARRA 1 302] 5910 TACOP 0: 150 KVA	J.


SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
	220KV	T-COP01 220/110/34.5kV	75.00
	110KV	LN-750	53.00
COPEY	34.5KV	T-COP02 34.5/13.8KV	4.00
COPET		LN-590	3.62
		LN-591	17.46
	13.8kV	COP-01	4.13


UNIFILARES SUBESTACIONES TRANSELCA


VAL09 110/45/13.8 KV 42 7/16 MVA

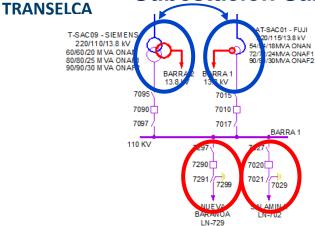

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
	110KV	LN-748	28.00
	110KV	LN-749	39.00
		LN-513	23.50
	34.5KV	LN-599	26.07
		LN-598	9.14
		LN-544	17.26
VAL		LN-5123	13.99
VAL		LN-5111	3.11
		CTO-01	0.21
		CTO-02	8.32
	12.007	CTO-03	10.29
	13.8KV	CTO-04	7.22
		CTO-05	6.23
		CTO-06	12.12

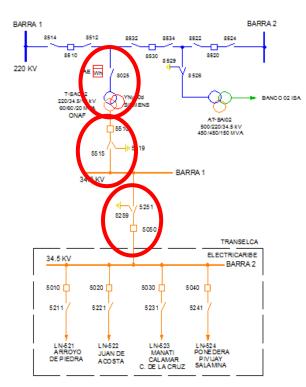


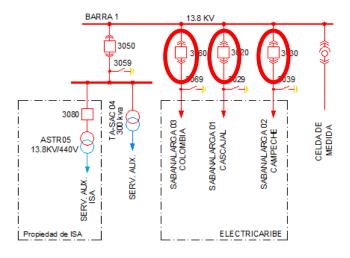
UNIFILARES SUBESTACIONES TRANSELCA Subestación Fundación

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
FUN	110KV	LN-711	33.00
		T-FUN02 110/34.5/13.8KV	28.00
	34.5KV	LN-518	15.08

UNIFILARES SUBESTACIONES TRANSELCA Subestación Guajira

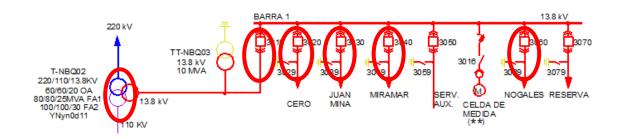



5439	037 5980			
Propiedad		Æ		
Electricaribe	T-TGJ07 1 34.5/13.8 kV 6.3/7.8 MVA ONAN/ONAF Dyc 3010	3.8KV Wh 30.40 30.30 30.20	3039 → RESERV. → 3029 → RESERV.	D, PALOMINO, DIBUYA A 02 13.8 KV A 01 13.8 KV
	В	301: ARRA 1	5 TA-TGJ 08 1.5 MVA 13.8KV/220	


SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
TGJ	34.5KV	T-TGJ07 34.5/13.8KV	3.66
	13.8kV	MINGUEO	3.66

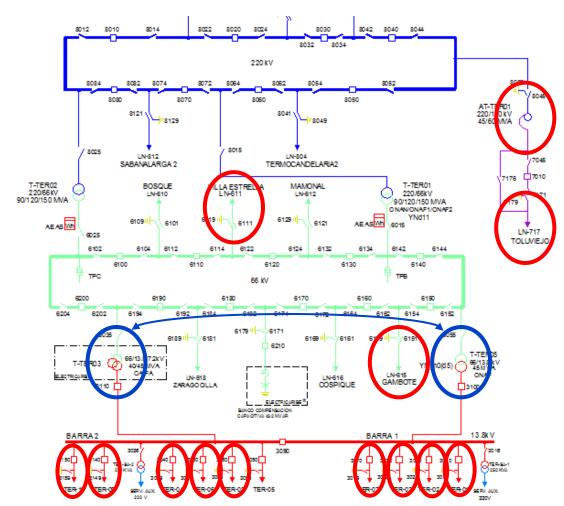
UNIFILARES SUBESTACIONES TRANSELCA Subestación Sabanalarga

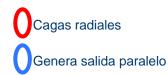
Cagas radiales


Genera salida paralelo

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
	110KV	LN-702	25.00
		LN-729	66.00
CAC	34.5KV	T-SAC02 220/34.5KV	18.00
SAC	13.8KV	SAC-01	7.72
		SAC-02	1.76
		SAC-03	5.05

UNIFILARES SUBESTACIONES TRANSELCA Subestación Nueva Barranquilla



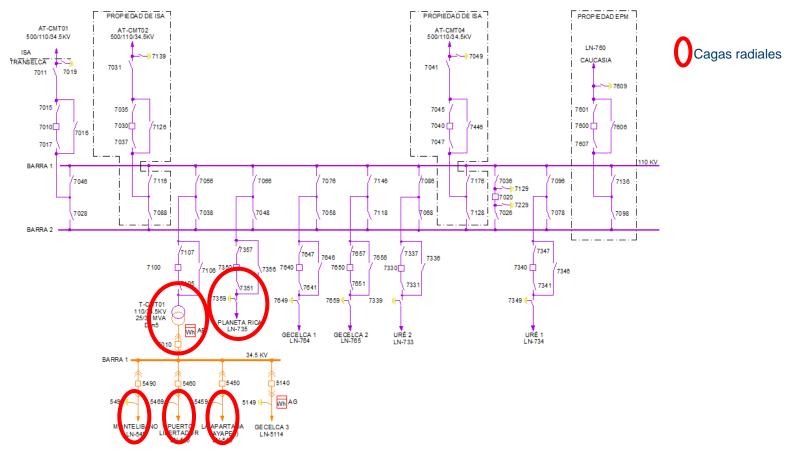


SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		T02	25.00
		CABLE CERO	9.60
NBQ	13.8kV	JUAN MINA	8.17
		MIRAMAR	6.30
		NOGALES	8.19

UNIFILARES SUBESTACIONES TRANSELCA Subestación Ternera

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		LN-611	31.00
	66KV	LN-615	21.00
	OOK V	T-TER03 66/13.8KV	40.00
		T-TER05 66/13.8KV	40.00
		TER-01	9.88
		TER-02	8.82
TER		TER-03	7.50
IEK		TER-04	11.70
	13.8kV	TER-05	0.00
	15.0KV	TER-06	6.18
		TER-07	7.82
		TER-08	8.22
		TER-09	10.07
		TER-10	11.14

UNIFILARES SUBESTACIONES TRANSELCA Subestación Chinú



AUTO	OTRANSFORMA AT-CHI01	NDOR .		NSFORMAD CHI 02	R						AUTO:	TRANSFORMAD	OR		
	†			†	RESER 110					!	ISA	†	СН	INU PLANTA LN-716	A
ISA	① 3x5	0 MVA	(3x50 MV	^ 🕇							3x50 I	MVA 		
TRANSEL	.CA 7019	<u></u>	7035	7039 =		7079 =						7085 / 7089 =	-	7169	Ţ
AE AS Wh	.	AE AS	7035 Wh							- 1	AE Wh				7
	7011 7016		7031 7030	7036	7077 /	7076						7087 7088	ιi	160 702	16.
	7017		7037		7177			7020				7117		167	
	7108 7208	}	7306	7326	7176	7276	7126	7226				7166 7266	71	116 721	6
110 k\	v	 		-	+		++		1						BARRA 1
		Щ	-			+-	+	+		•	<u> </u>			-	BARRA 2
		7386	/ 7376 /	7396	/ 740	B / 714	B / 7246	7136	7236	7416	7518	 	7158	/ 7128/	
		7327	/	7307	7	714	7	7137	7	7317	7		7687		
		7320 7321	7356	7300 7301	Τ "	6 714 714	T /	7130	T '330	7310 [7318	/	7680 [7681	7686	
		/321	,	100	Ļ]	·]	`		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ì	
	Ę	7329		730		<u></u> ∓714	9	/139		7319			<u></u> 7689		
			,		ļ		\		+		ļ		,		
		LN-7 COVE	32 NAS		I-730 MARQ# 8		N-714 ONTERIA	L	N-713 SINCE		-731 TON 1		LN- BOS	768 TON 2	

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		LN-713	48.00
CHINU	110KV	LN-730	15.00
		LN-716	41.00

UNIFILARES SUBESTACIONES TRANSELCA Subestación Cerromatoso

SUBESTACIÓN	TENSIÓN	RAMAL	CARGA
SUBESTACION	TENSION	RAIVIAL	MAXIMA
	110KV	LN-735	19.00
	110KV	T-CMT03 110/34.5KV	23.00
CERROMATOSO		LN-545	6.33
	34.5kV	LN-546	5.43
		LN-549	10.00

RESUMEN CARGAS ALIMENTADAS RADIALMENTE DESDE SUBESTACIONES DE TRANSELCA

AREA OPERATIVA	SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		110///	LN-740	26.00
		110KV	LN-741	43.00
	CUESTECITA	34.5KV	LN-564	14.41
		42.014	CUC-01	2.40
		13.8kV	CUC-02	2.09
		110KV	LN-750	53.00
			LN-590	3.62
			LN-591	17.46
		13.8kV	COP-01	4.13
		110///	LN-712	32.00
		110KV	LN-754	43.00
			LN-587	4.92
			LN-5138	4.82
	CNAT		CONCEPCION	9.59
	SMT		JARDIN	9.82
		42.014	BONDA	8.05
		13.8kV	CERRO KENNEDY	2.22
GCM			LA 30	9.36
			SMT-06	6.52
		110///	LN-748	28.00
		110KV	LN-749	39.00
			LN-513	23.50
			LN-599	26.07
		34.5KV	LN-598	9.14
		54.5KV	LN-544	17.26
	VAL		LN-5123	13.99
	VAL		LN-5111	3.11
			CTO-01	0.21
			CTO-02	8.32
		13.8KV	CTO-03	10.29
		13.8KV	CTO-04	7.22
-			CTO-05	6.23
			CTO-06	12.12
	FUN	34.5KV	LN-518	15.08
	TGJ	MINGUEO	3.66	

AREA OPERATIVA	SUBESTACIÓN	TENSIÓN	RAMAL	CARGA MAXIMA
		110KV	LN-702	25.00
		110KV	LN-729	66.00
	SAC		SAC-01	7.72
		13.8KV	SAC-02	1.76
ATL			SAC-03	5.05
			CABLE CERO	9.60
	NDO	12.00/	JUAN MINA	8.17
	NBQ	13.8KV	MIRAMAR	6.30
			NOGALES	8.19
		66KV	LN-611	31.00
		OOKV	LN-615	21.00
			TER-01	9.88
			TER-02	8.82
	TERNERA		TER-03	7.50
BOL			TER-04	11.70
BOL	IERNERA	13.8kV	TER-05	0.00
		15.6KV	TER-06	6.18
			TER-07	7.82
			TER-08	8.22
			TER-09	10.07
			TER-10	11.14
			LN-713	48.00
	CHINU	110KV	LN-730	15.00
			LN-716	41.00
CORSUC	_	110KV	LN-760	82.00
CORSUC		TIOKV	LN-735	19.00
	CERROMATOSO		LN-545	6.33
		34.5kV	LN-546	5.43
			LN-549	10.00

El total de la carga alimentada radialmente desde las subestaciones de TRANSELCA es de 1.017MW, de un pico de 2.000MW

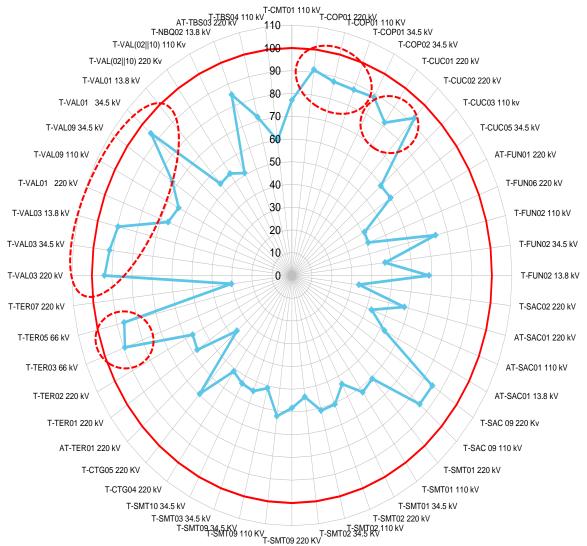
RESUMEN CARGAS ALIMENTADAS RADIALMENTE DESDE SUBESTACIONES DE TRANSELCA

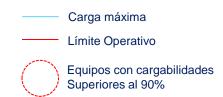
Aproximadamente el 50% de la carga alimentada de los puntos de conexión en las subestaciones propiedad de TRANSELCA son radiales. Esto implica que ante la salida de cualquiera de los ramales detallados en este informe, se presentará racionamiento hasta tanto la emergencia sea superada.

Ante el crecimiento de la demanda de la zona, se ha venido solicitando energizar las reservas con las que se contaba en las subestaciones, reduciendo esta infraestructura de respaldo destinada para la rápida recuperación del servicio ante contingencias.

El caso crítico se presenta ante la salida forzada de Transformadores, en los que a pesar de presentar probabilidades de falla bajas y de contarse con algunas reservas, el impacto de una falla permanente en uno de ellos es alto, debido a que los tiempos de recuperación del servicio pueden tomar hasta 20 días, lo que unido a que estos equipos generalmente alimentan bloques importantes de carga, puede generar problemas de orden público.

Situación similar se presenta en las celdas de 34.5 y 13.8kV, en las que en algunos casos también se requieren tiempos de recuperación del orden de días al no reconocerse reservas en las subestaciones.




IMPACTO EN LA CALIDAD DEL SERVICO ANTE FALLA EN TRANSFORMADORES DE CONEXIÓN PROPIEDAD DE TRANSELCA

CARGABILIDAD MAXIMA TRANSFORMADORES **TRANSELCA - MARZO 2015**

Para algunos de los transformadores con niveles de cargabilidad superiores al 90% existen proyectos de expansión en curso. Sin embargo, hay casos para los cuales no se tienen proyectos definidos. Ejemplo:

Copey 220/110/34.5kV Valledupar 220/34.5/13.8kV Ternera 66/13.8kV

TRANSFORMADORES DE RESERVA DISPONIBLES FEBRERO DE 2015

TRANSFORM	TRANSFORMADORES DE RESERVA PARA USO DE ELECTRICARIBE														
NOMENCLATURA OPERATIVA	NOMBRE EQUIPO	UBICACION	NIVELES TENSION	POTENCIA ALTA	POTENCIAS MVA	REMUNERADO CONTRATO									
T-COP 220/110/34,5kV 100/70/30MVA	T-COP02R	COP	220/110/34.5	100	100/70/30	ELECTRICARIBE									
T-TER1 R 220/110-66kV 100MVA	T-TER1R	TER	220/110-66	100	100	ELECTRICARIBE									
T-TBS R (BANCO MONOFASICO)	T-TEB R	TBS	220/110	60	60	ELECTRICARIBE									
T-MULTI 220-110/34.5-34.5/13.8-13.8kV 120/60/60MVA	T MULTI	SAC	220-110/34.5- 34.5/13.8-13.8kV	120	120/60/60	ELECTRICARIBE									
T-NBQ R 220/110/13,8KV 100/70/30MVA	T-NBQ R	NBQ	220/110/13,8	100	100770/30	ELECTRICARIBE									
T-VAL02 R 45/30/15MVA 220/34,5/13.8KV	T-VAL02R	VAL	220/34.5/13.8	45	45/30/15	ELECTRICARIBE									

La reserva disponible en TEBSA corresponde a una fase el banco monofásico de 180MVA por lo que es exclusiva para esta ubicación.

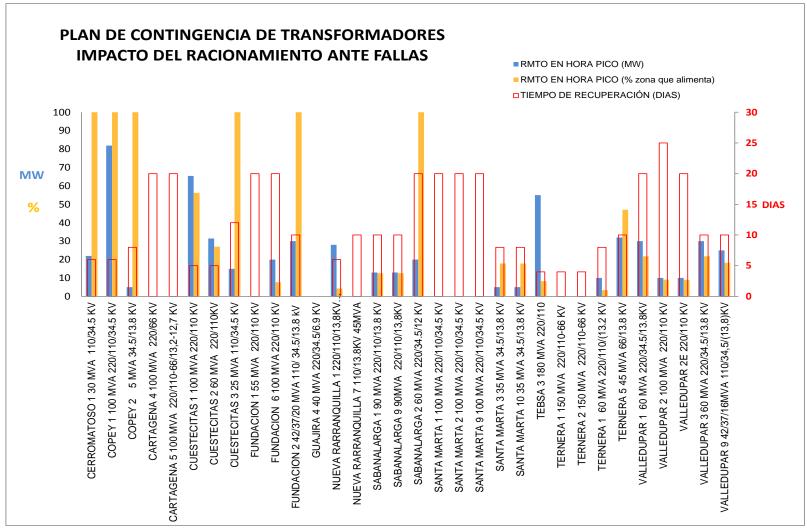
PLAN DE CONTINGENCIA ACTIVOS TRANSELCA RESERVAS DISPONIBLES Y TRANSFORMADORES QUE CUBRE CADA UNA DE ELLAS

	TRANSFORMADORES EN OPERACIÓN CONEXIONES OR																																
										Т	RAN	SFO	RMA	DOF	RES E	N OI	PERA	CIÓ	N CC	NEX	ION	ES O	R										
RESERVAS DISPONIBLES	T-FUN02	AT-TBS03	T-TGJ04	T-NBQ06	T-CTG04	T-SMT03	T-CUC03	T-SMT10	T-CTG05	T-TER01	T-COP02	T-TER02	AT-FUN01	AT-TER1	T-CMT01	T-VAL01	T-VAL09	T-VAL03	T-FUN06	T-SMT09	AT-VAL02E	T-CUC02	T-SMT02	AT-VAL02	T-SMT01	T-TER05	T-COP01	T-NBQ02	T-SAC09	AT-SAC01	T-CUC01	T-SAC02	POSIBLES USOS DE RESERVAS
T-TEB R		Χ																															1
Terciario TER02 150MVA																										Х							1
T-TGJ03			Х																														1
Terciario TER01 150MVA																										Χ							1
T-CUCR												-										Χ									Χ		2
T VAL02R												overence				Χ		Χ														Χ	3
T MULTI															Χ	Χ	Χ	Χ														Χ	5
T-NBQ R												-							Χ		Χ	Χ		Χ			Χ	Χ	Χ	Χ	Χ		9
T-COP02R												occupant	Χ	Χ					Χ	Х	Х	Χ	Χ	Χ	Χ		Х	Χ	Χ	Х	Χ	Χ	15
T-TER1R					Х				Х	Χ		Χ	Χ	Χ					Х	Х	Χ		Χ	Χ	Χ		Χ	Χ	Χ	Χ	Χ		17
T MOVIL 40	Χ			Χ		Χ	Χ	Χ			Χ				Χ		Χ			Χ			Χ		Χ	Χ	Χ	Χ	Χ	Х		Х	17
NÚMERO DE RESERVAS QUE LO CUBREN	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	3	3	3	3	3	3	3	3	4	4	4	4	4	4	

Si bien para todos los transformadores se cuenta con equipos de reserva que pueden cubrir su salida de servicio, en color naranja se resaltan los transformadores que cuentan con sólo un equipo que puede suplirlo, y en rojo las reservas que suplen a más de un equipo en servicio.

IMPACTO EN LA CALIDAD DEL SERVICIO ANTE FALLA PERMANENTE EN TRANSFORMADORES

En la siguiente diapositiva se muestra el impacto ocasionado por la falla permanente de cada uno de los transformadores en operación propiedad de TRANSELCA, medido en:


- Potencia racionada en hora pico (MW).
- Porcentaje de carga desatendida con relación a la carga total de la zona de influencia (%).
- Tiempo de recuperación del servicio considerando el plan de contingencia utilizando reservas disponibles y su ubicación actual. (Días).

Como ejemplo, para el caso de una falla del transformador Copey 220/110/34.5kV 100/70/30MVA, la carga máxima desatendida sería de 82MW, es el 100% de la carga de la zona de influencia de este transformador (no hay fuentes alternas de alimentación) y el tiempo de recuperación es de 5 días, utilizando el transformador de reserva que actualmente se encuentra en frío y disponible en la subestación Copey.

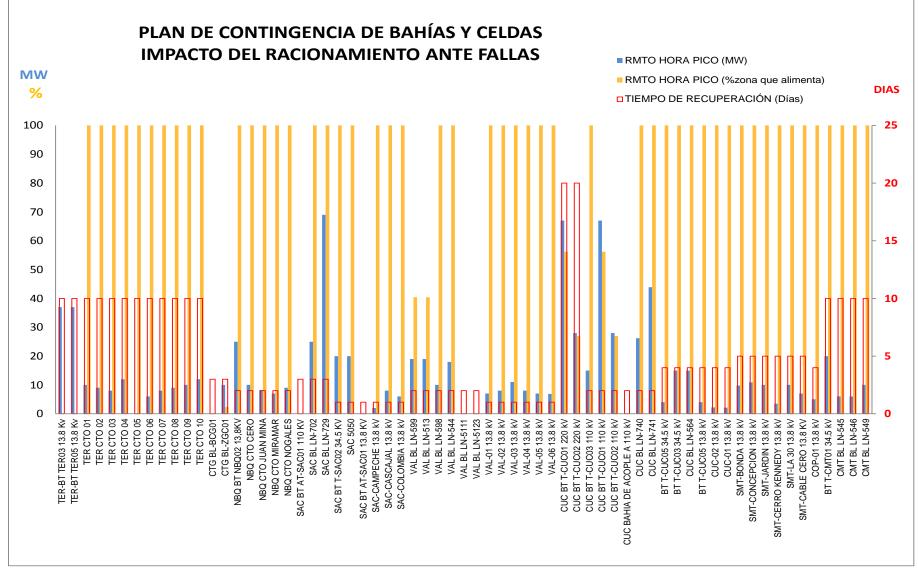
Se resaltan casos en los que el tiempo de recuperación del servicio con los equipos de reserva disponibles puede llegar a ser superior incluso a veinte (20) días, debido a la necesidad de traslados de estos equipos desde su ubicación actual hasta el posible punto de falla.

IMPACTO EN LA CALIDAD DEL SERVICIO ANTE FALLA PERMANENTE DE TRANSFORMADORES

^{*} Impacto del racionamiento se estimó con distribución actual de cargas.

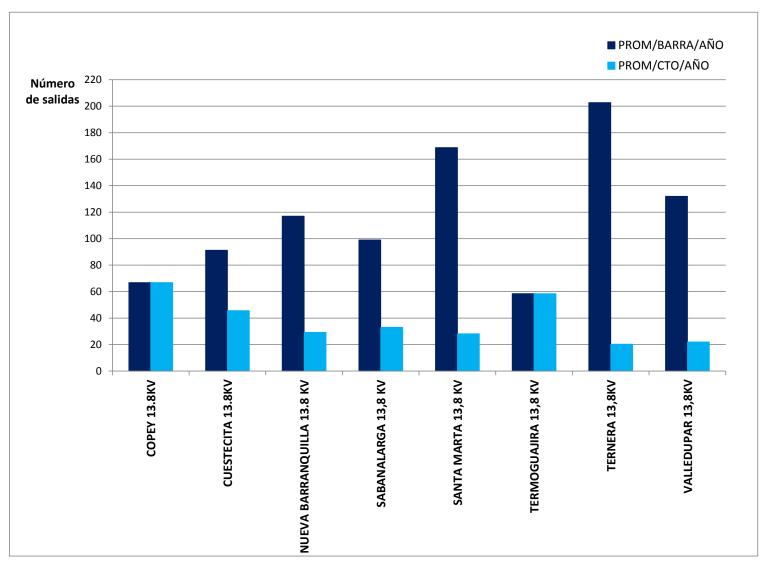
IMPACTO EN LA CALIDAD DEL SERVICO ANTE FALLA EN CELDAS 34.5 Y 13.8kV PROPIEDAD DE TRANSELCA

IMPACTO EN LA CALIDAD DEL SERVICIO ANTE FALLA PERMANENTE EN CELDAS A 34.5 Y 13.8KV


Similar al caso de transformadores, en la siguiente diapositiva se muestra el impacto del racionamiento ante salidas de las celdas de 34.5 y 13.8kV en las subestaciones de TRANSELCA.

Para este tipo de activos, la situación crítica se presenta en la subestación Ternera 13,8kV y Cerromatoso 34,5kV, en las que ante fallas de las celdas de salidas los tiempos de recuperación son del orden de diez (10) días.

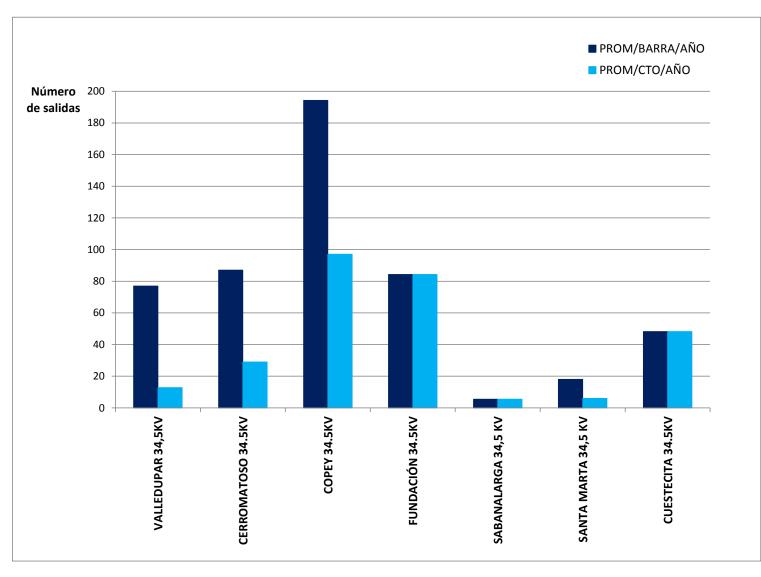
Otro punto a considerar es el número de eventos alimentados desde las barras de 34.5 y 13.8kV, eventos que inciden en la vida útil de los activos aguas arriba.



IMPACTO ANTE FALLA PERMANENTE DE CELDAS DE SALIDA

SALIDAS FORZADAS CELDAS 13.8kV PROPIEDAD DE TRANSELCA DEBIDO A EVENTOS EN CIRCUITOS QUE ALIMENTAN

Datos 2011-2014


** Los datos no incluyen los intentos de cierre negativo de los circuitos

El 3,4% de estas salidas son atribuibles a TRANSELCA.

SALIDAS FORZADAS CELDAS 34.5kV PROPIEDAD DE TRANSELCA DEBIDO A EVENTOS EN CIRCUITOS QUE **ALIMENTAN**

Datos 2011-2014

** Los datos no incluyen los intentos de cierre negativo de los circuitos

El 1,9% de estas salidas son atribuibles a TRANSELCA.

RESUMEN SITUACION OPERATIVA PUNTOS DE CONEXIÓN SUBESTACIONES PROPIEDAD TRANSELCA

CONCLUSIONES SITUACION OPERATIVA PUNTOS DE CONEXIÓN SUBESTACIONES PROPIEDAD TRANSELCA

- El atraso en los proyectos de expansión del STR de la Costa Atlántica ha conllevado a operar al límite algunos activos de conexión propiedad de TRANSELCA. Ejemplo de esta situación es Valledupar 220/110kV en el cual ha sido necesario implementar una conexión provisional para evitar racionar en las cargas alimentadas desde este transformador. Otros casos a considerar y que están ad portas de volverse críticos son los de Copey 220kV, Cuestecita 220kV, Ternera 66kV y Valledupar 34.5kV.
- Otra consecuencia de estos atrasos, y específicamente para el área Atlántico, es que no se contará con despachos que permitan una operación segura que cubra el criterio N-1 a partir de finales del año 2015 (Tomado de Informe XM: Planeamiento Operativo Eléctrico Mediano Plazo XM_CND_2015_023_PrimerTrimestre).
- Por otra parte, el 50% de las cargas alimentadas desde los puntos de conexión en las subestaciones de TRANSELCA son radiales y como agravante a esta situación, no se tienen contratadas las reservas disponibles suficientes que permitan una rápida recuperación del servicio ante una falla de estas conexiones.
- El caso crítico se presenta en los transformadores de potencia, para los que si bien se tienen contratados seis (6) transformadores de reserva que permiten recuperar el servicio ante cualquier falla de los equipos propiedad de TRANSELCA, los tiempos de recuperación pueden ser inclusive superiores a 20 días. Estos tiempos se presentan, debido a la necesidad de trasladar estos transformadores desde su lugar de almacenaje hasta la ubicación del equipo a reemplazar.

CONCLUSIONES SITUACION OPERATIVA PUNTOS DE CONEXIÓN SUBESTACIONES PROPIEDAD TRANSELCA

- En varias subestaciones que cuentan con transformadores en paralelo, la salida de uno de los estos ocasiona sobrecarga en el transformador en paralelo y su posterior salida de servicio. Esto indica que ante falla permanente de uno de ellos habría racionamiento hasta la superación de la emergencia.
- Los casos más críticos se presentan para fallas de transformadores que son totalmente radiales y que son la única fuente de alimentación a ciertas zonas, como el caso de Copey 220/110/34.5kV en el que si bien se cuenta con un transformador de reserva fría en la subestación, la puesta en servicio de este equipo ante una falla del que se encuentra operativo, implica cinco (5) días de trabajos, durante los cuales se deberá racionar en Copey, El Paso, El Banco, Tamalameque, El Burro, Pailitas y poblaciones aledañas con una demanda aproximada de 89MW.
- Por otra parte, al haber sido energizadas las celdas y bahías de reserva a 110, 66, 34.5 y 13.8kV con las que se contaba en nuestras subestaciones como producto del crecimiento de la demanda, la situación de este tipo de equipos también es crítica, ya que no se cuenta con suplencias que permitan la rápida recuperación de fallas, situación que se agrava al considerar el alto número de eventos que se presentan en la red de distribución y que inciden negativamente en la vida útil de los equipos propiedad de TRANSELCA desde los cuales se alimentan.
- En conclusión, la situación operativa de las conexiones en las subestaciones de TRANSELCA es crítica debido a: 1) Atraso en proyectos de expansión en el STR y SDL, 2) Operación de activos en valores cercanos al límite de su capacidad, 3) Característica Radial de las conexiones, 4) No contar con reservas remuneradas que permitan recuperación rápida del servicio y 5) Número de fallas en los circuitos que son alimentados desde algunas de estas conexiones.

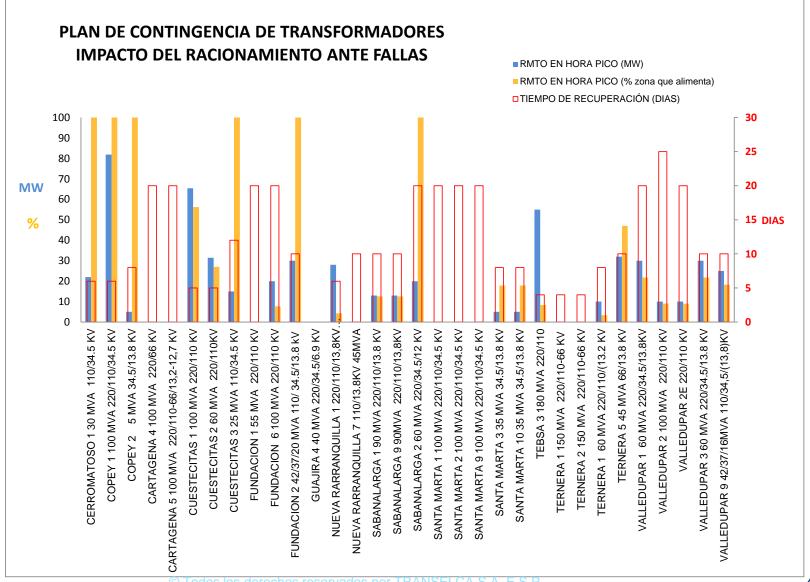
- Acelerar la entrada en operación de los proyectos de Expansión del STR definidos en los Planes UPME, procurando mecanismos que respondan a la urgencia manifiesta para su entrada en servicio en aras de garantizar la seguridad de la operación de esta zona del país.
- Si bien se cuenta con reservas de transformación que permiten restablecer el servicio ante fallas de cualquier equipo propiedad de TRANSELCA, los tiempos de restablecimiento representan un alto impacto para los usuarios finales, por lo que se considera necesario definir regulatoriamente la necesidad de contar con reservas ante fallas permanentes de transformadores de conexión al STN o STR y la oportunidad en las que deben estar en servicio una vez sean requeridas.
- De igual forma se propone que el esquema remuneratorio permita energizar las reservas frías de transformación o en su defecto contar con la infraestructura necesaria para su ágil incorporación al sistema, tales como cambios rápidos de fase existentes en otros niveles de tensión. Tiempos de reposición del servicio del orden de días, podrían implicar problemas de orden público.
- Para la situación actual de los puntos de conexión en las subestaciones de TRANSELCA en la Costa Atlántica, una opción para superar los riesgos operativos mencionados relacionados con los transformadores, es la de adquirir reservas adicionales y reubicar equipos existentes de tal manera que cubran las contingencias N-1 sin ocasionar racionamiento y además, disminuyendo los tiempos de recuperación de fallas.
- Para el tema de las celdas de salida, una posible solución es la utilización de trenes de celdas móviles que permitan de manera ágil llegar a los sitios en los cuales ocurra una falla e implementar la infraestructura que permita la rápida conexión de estos equipos móviles en las subestaciones.

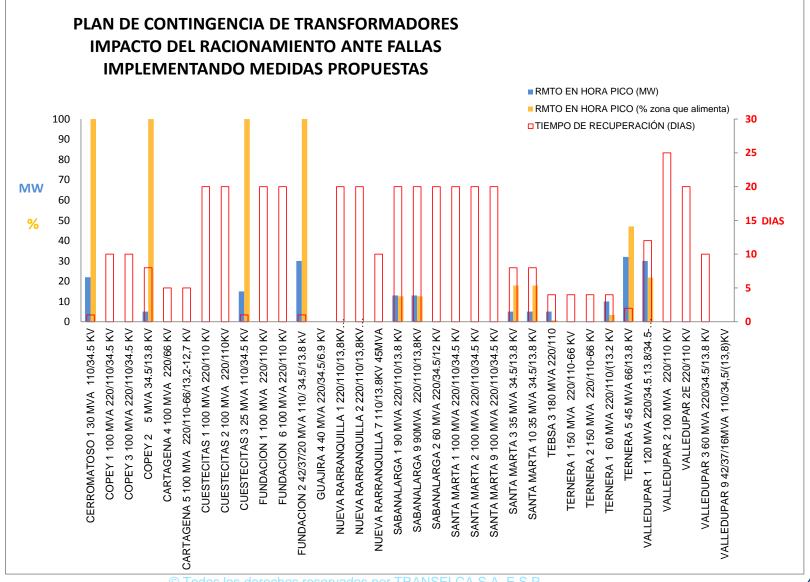
De acuerdo con lo expuesto anteriormente, se proponen las siguientes acciones prioritarias para la mejora de la calidad, seguridad y confiabilidad de la operación eléctrica en la Costa Atlántica:

- Acelerar los proyectos definidos en el plan de Expansión de la UPME
 - Proyecto STR Caracolí, incluyendo la reconfiguración de TEBSA 220kV y en general los proyectos a 110kV de Barranquilla.
 - Proyecto de ampliación de la transformación en Valledupar 220/110kV. Para este caso se recomienda revisar la capacidad del nuevo equipo y pasar de 100 a 150MVA al igual que revisar el valor del equipo existente y cambiarlo por uno del mismo valor.
 - Proyecto Nueva Subestación la Loma STR y línea La Loma EL Paso 110kV.
 - Proyecto ampliación transformación 220/110/13.8kV 100/70/30 Nueva Barranquilla.
 - Proyecto ampliación transformación 220/110kV 2x100MVA Cuestecita
- Lograr el reconocimiento de las siguientes reservas de transformación:
 - En Ternera 220/110 66kV 150MVA
 - En Valledupar 220/34.5/13.8kV 120/60/60MVA
 - Transformador Móvil 110/34.5/13.8kV 50/50/50MVA con sede en Cerromatoso.
 - Transformador Móvil 110/34.5/13.8kV 40/40/40MVA con sede en Cuestecita
- Energizar las siguientes reservas frías existentes:
 - Transformador 220/110/34.5kV 100/70/30MVA en la subestación Copey

- Transformador 220/34.5/13.8kV 120/60/60MVA de la subestación Valledupar en reemplazo de uno de los equipos existentes de 60/30/30MVA.
- Implementar proyecto de Ampliación de Ternera 66/13.8kV, mediante una nueva barra alimentada desde los terciarios de los transformadores de 150MVA. Este proyecto permite eliminar el riesgo existente con la alta cargabilidad a 13.8kV en esta subestación y la ausencia de reservas para las celdas de salida.
- Realizar los siguientes movimientos de transformadores entre subestaciones con objeto de cumplir el criterio N-1 (no racionar ante salidas de transformadores de conexión al STN) y minimizar el impacto al usuario final mientras se implementan las acciones correctivas tendientes a reemplazar el equipo fallado.
 - Supeditado al cambio de uno de los transformadores en Valledupar 220/34,5/13,8kV 60/30/30MVA por el de 120/60/60MVA, el transformador Valledupar 110/34.5/13.8kV 42/37/15MVA se retira y se instala en Fundación como reserva del equipo actualmente en servicio con las mimas características. Este equipo también serviría como reserva para Cuestecita.
 - Supeditado al cambio del transformador Valledupar 220/110kV 100MVA por 150MVA, el transformador desmontado de 100MVA se lleva a la subestación Fundación en reemplazo del existente 220/110kV 55MVA.

.




- El transformador 220/110 55MVA desmontado de Fundación se implementaría como reserva del AT-TER01 220/110kV 60MVA que alimenta parte del Dpto. de Bolívar y Sucre.
- Trasladar el transformador liberado Valledupar 220/34.5/13.8kV 60/30/30MVA a la subestación Sabanalarga como reserva fría con conexión rápida para reemplazo del transformador Sabanalarga 220/34.5kV 60MVA.
- Reconocimiento de dos (2) trenes de celdas móviles de 34.5kV energizables también a 13.8kV con una llegada y cinco salidas casa uno, que permitan de manera rápida recuperar cualquier falla en las celdas de estos niveles de tensión de las subestaciones actuales y futuras.

Con la implementación de las medidas mencionadas, el impacto de fallas de transformadores o celdas de conexión en las subestaciones de TRANSELCA mejoraría tal como se presenta en las diapositivas siguientes.

