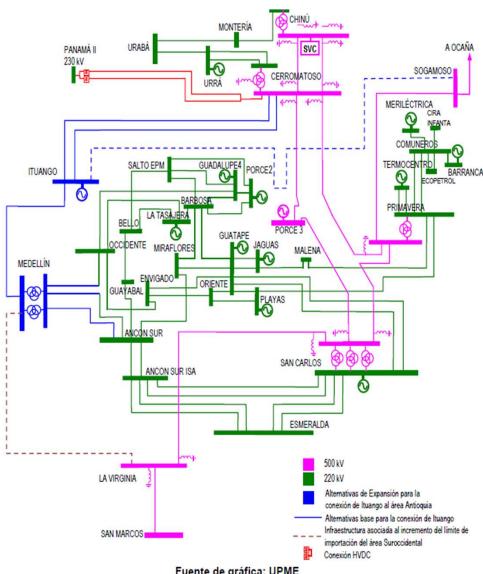


Estado del arte, aplicaciones y oportunidades para Colombia

Aspectos técnicos regulatorios y económicos de los sistemas FACTS distribuidos

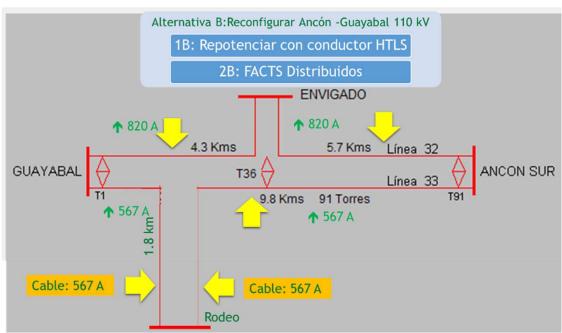
D-FACTS en el sistema de EPM Primera instalación en Latinoamérica

Un evento:

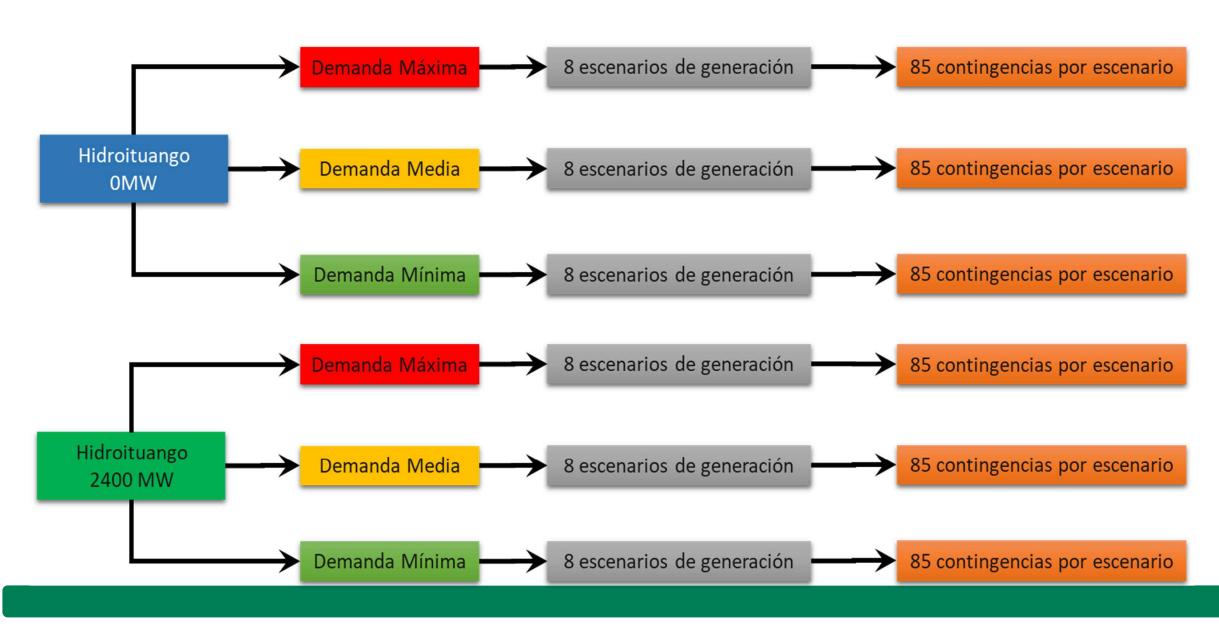


Antecedentes en el STN

Obras para la interconexión de la central Hidroituango -Plan de Expansión de Referencia Generación – Transmisión 2013 – 2027

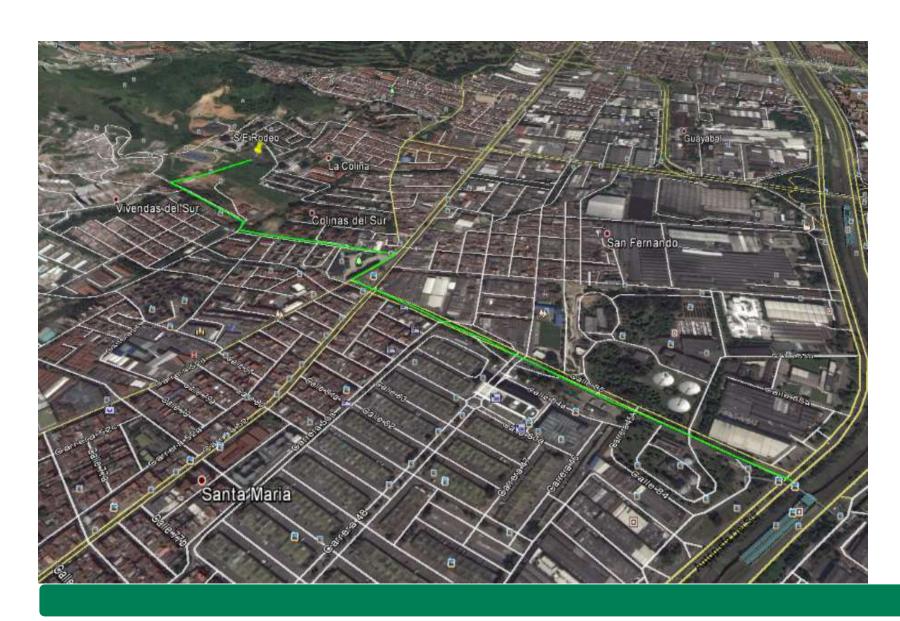

Fuente de gráfica: UPME

Antecedentes en el STR



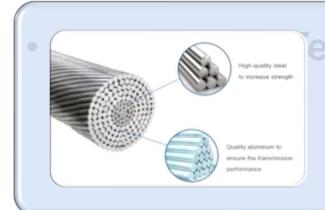
Escenarios de análisis

Problemas de cargabilidad encontrados Reconfiguración Envigado-Rodeo-Guayabal


Sobrecargas en estado normal y bajo contingencia Pequeñas centrales hidráulicas con solicitud de conexión, con una suma de potencia entre ellos mayor de 400 MW.

Atención de la demanda

					Ituango 2400MW				Ituang	o OMW		
	Generation Scenario	Demand Scenario	Affected Element	Contingency	Load % 2020	Load % 2022	Load % 2025	Load % 2030	Load % 2020	Load % 2022	Load % 2025	Load % 2030
	NAal_Gsal_pch	Min	Ancón Sur - Envigado 110	Medellín - Occidente 220	139.05	105.21	104.35	104.67	147.97	127.98	126.76	126.18
	NAal_GSal	Min	Ancón Sur - Envigado 110	Medellín - Occidente 220	126.22	107.98	106.75	106.66	135.34	127.03	125.69	127.06
	Naba_Gsba_pch	Med	Ancón Sur - Envigado 110	Guayabal - Rodeo A 110		100.57	88	81.37	81.85	93.76	94.2	87.98
	NAal_GSba	Min	Ancón Sur - Envigado 110	Medellín - Occidente 220	96.41	80.66			105.7	98.58	95.73	98.19
	NAal_GSal	Max	Ancón Sur - Envigado 110	Medellín - Occidente 220	92.69				100.69	91.13	86.06	87.38
	NAal_Gsal_pch	Max	Ancón Sur - Envigado 110	Medellín - Occidente 220	104.24				113.65	102.17	93.93	91.11
	NAal_Gsal_pch	Med	Ancón Sur - Envigado 110	Medellín - Occidente 220	101.49				111.27	93.05	89.65	87.73
	NAal_Gsal_pch	Min	Ancón Sur - Envigado 110	Base case	96.11				101.08	85	83.55	82.84
	NAal_Gsba_pch	Min	Ancón Sur - Envigado 110	Medellín - Occidente 220	105.85				115.23	98.63	95.13	97.86
	Naba_Gsal_PCH	Min	Ancón Sur - Envigado 110	Medellín - Occidente 220	96.35				105,19	89.9	86.51	87.5
2	NAal_Gsal_pch	Min	Ancón Sur - Guayabal 110	Guayabal - Ancón 220	103.45				105.61	85.41	82.39	
	Naba_Gsal	Max	Envigado - Rodeo 110	Envigado - Itagüí 110	123.29	137.88	150.59	170.08	125.09	141.11	154.45	172.93
	Naba_Gsal	Med	Envigado - Rodeo 110	Envigado - Itagüí 110	116.77	132.72	145.04	161.86	118.93	135.62	149.08	165.13
	Naba_Gsal_PCH	Max	Envigado - Rodeo 110	Envigado - Itagüí 110	100.22	111.92	125.92	145.54	102.75	116.45	129.85	149.17
	Naba_Gsba	Max	Envigado - Rodeo 110	Envigado - Itagüí 110	97.44	124.79	123.25	141.14	99.41	115.08	127.57	144.79
	Naba_Gsal_PCH	Med	Envigado - Rodeo 110	Envigado - Itagüí 110	93.65	107.84	120.45	138.48	96.56	111.83	124.72	141.83
	Naba_Gsba	Med	Envigado - Rodeo 110	Envigado - Itagüí 110	91.29	105.17	117.35	133.58	93.11	109.05	121.66	137.29
	NAal_GSal	Max	Envigado - Rodeo 110	Envigado - Itagüí 110	85.63	100.17	113.36	130.29	87.91	104.94	117.2	135.07
	Naba_Gsal	Max	Envigado - Rodeo 110	Base case	88.94	100.59	110.43	126.25	90.54	103.83	114.19	129.18
	NAal_GSal	Med	Envigado - Rodeo 110	Envigado - Itagüí 110		94.42	106.93	123.6	80.19	98.92	111.36	127.79
	Naba_Gsal	Med	Envigado - Rodeo 110	Base case	84.19	96.86	106.46	120.18	86.1	99.78	110.3	123.4
	NAal_GSba	Max	Envigado - Rodeo 110	Envigado - Itagüí 110		88.8	100.7	118.99		92.28	105.52	122.56
	Naba_Gsba_pch	Max	Envigado - Rodeo 110	Envigado - Itagüí 110		87.67	99.15	117.4		92.04	104.32	121.74
	NAal_GSba	Med	Envigado - Rodeo 110	Envigado - Itagüí 110		82.76	94.62	112.45		86.1	99.04	116.08
	Naba_Gsba_pch	Med	Envigado - Rodeo 110	Envigado - Itagüí 110		96.86	93.48	109.8		86.23	98.35	114,58
	NAal_Gsal_pch	Max	Envigado - Rodeo 110	Envigado - Itagüí 110			89.72	107.62		80.37	95.18	112.53
	Naba_Gsal_PCH	Max	Envigado - Rodeo 110	Base case			89.7	105.6		82.83	93.52	109.17
	Naba_Gsba	Max	Envigado - Rodeo 110	Base case		90.4	88.16	102.68		82.72	92.29	106.29
	NAal_Gsal_pch	Med	Envigado - Rodeo 110	Envigado - Itagüí 110			84.15	102.61			89.77	106:45
	Naba_Gsal_PCH	Med	Envigado - Rodeo 110	Base case			85.82	100.41			89.89	103.72
	Naba_Gsba	Med	Envigado - Rodeo 110	Base case			83.7	96.93			87.78	100.56
	NAal_Gsba_pch	Max	Envigado - Rodeo 110	Envigado - Itagüí 110				96.81			82.73	101.35
	NAal_Gsal_pch	Min	Medellín - Occidente 220	Ancón Sur - Miraflores 220	125.28	112.71	112.85	112.85	136.02	133.58	133.73	132.3
	NAal_Gsal_pch	Min	Medellín - Occidente 220	Base case	109.59	100.28	100.26	100.21	119.62	119.34	119.49	118.11
	Naba_Gsal_PCH	Med	Cordova - Miraflores 110	Envigado - Oriente 220	128.32	118.57	122.87	134.9	137.08	130.08	135.95	147.25
	Naba_Gsal_PCH	Max	Cordova - Miraflores 110	Envigado - Oriente 220	119.11	116.51	111.83	126.87	126.98	129.61	124.39	139.41
	Naba_Gsal	Med	Cordova - Miraflores 110	Envigado - Oriente 220	101.79	102.56	105.32	116.77	108.37	111.47	118.04	128.5
	Naba_Gsal_PCH	Med	Cordova - Miraflores 110	Base case	95.86	89.34	92.41	100.97	101.63	96.99	101.15	109.26
	Naba_Gsal_PCH	Max	Cordova - Miraflores 110	Base case	87.71	86.01	82.99	93.7	92.91	94.87	91.46	102.15
	Naba_Gsal	Max	Miraflores - P Blancas 110	Miraflores - V Hermosa 110	111.59	110.38	118.23	126.34	112.51	111.27	119.24	126.94
	NAal GSal	Max	Amagá - Ancón 2 110	Amagá - Bolombolo 110	101.18				97.04			


Antecedentes en el STR

Corredor con altos desafíos ambientales y prediales

ALTERNATIVAS TECNOLÓGICAS

Repotenciar con Conductor tradicional de alma de acero Repotenciar con Conductor de alta temperatura

FACTS Convencionales FACTS Distribuidos

FACTS: Flexible AC
Transmission Systems

Características de las soluciones

Conductor tradicional de alma de acero

- ¿Si es Repotenciar o es construir de nuevo? → nuevas torres, actuales no soportarían el peso del nuevo conductor.
- Indisponibilidad del corredor de transmisión → retos y sobrecostos operativos
- Necesidad licenciamiento ambiental

Conductores de alta temperatura

- En principio se pueden usar las mismas torres, eligiendo adecuadamente el conductor
- Con un conductor con máximo mismo el mismo peso/longitud es posible aumentar sustancialmente la capacidad de corriente
- Posible indisponibilidad del corredor de transmisión -> sobrecostos operativos
- Pérdidas eléctricas inherentes a este tipo de tecnología → dentro del OPEX en el horizonte de evaluación
- Posible necesidad de licenciamiento ambiental

Linea de Tiempo de los D-FACTS en EPM

1985: Narain G. Hingorani, Life Fellow, IEEE propone el concepto "Flexible AC Transmission Systems Technology (FACTS)"

2005:EPM conoce la propuesta D-FACTS de Deepak M Divan, Fellow IEEE

A Distributed Static Series Compensator System for Realizing Active Power Flow Control on Existing Power Lines

> 2013:T&D World: Control de flujo en TVA

conjuntos STR Antioquia. agentes del

2018:Estudios congestion STN-Multiplicación de la problemática y la opción a otros sector

2000: Publicación "Understanding FACTS".

Se empieza a estudiar la tecnología FACTS en EPM

2007:IEEE **TRANSACTIONS** ON POWER DELIVERY, VOL. 22, NO. 1. JANUARY 2007

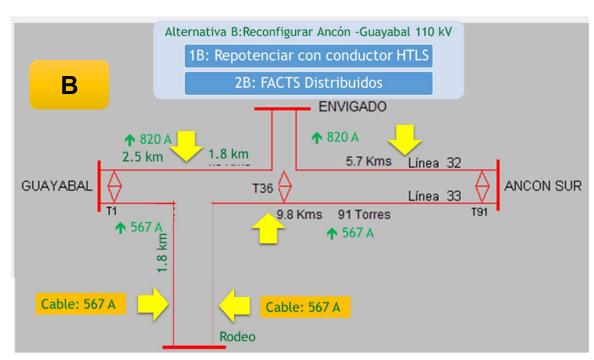
2017: Firma de NDA Visita a California y Atlanta

2021: Piloto en EPM. Primera instalación en Latinoamérica

FACTS TRADICIONALES

D-FACTS

Colombia			
	Altos requerimientos de espacio	Sin los requerimientos de espacio de los FACTS tradicionales	
	Diseños complejos y a la medida	Diseños modulares-escalables	
	Complejos procesos de mantenimiento con altos OPEX	Mantenimiento sencillo	
	Largos tiempos de diseño y construcción	Cortos tiempos de diseño e implementación	
	No son directamente reubicables	Fácilmente Reubicables	
	Confiabilidad casi siempre concentrada	La confiabilidad distribuida	
	Sobrevaloración inicial de los dispositivos para acomodar el crecimiento futuro	Valoración adecuada de requerimientos en el tiempo	

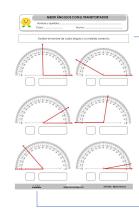


Soluciones estudiadas

	Número de SmartValve 1000-1800					
Lugar de Inyección	Rating (A)	2021	2022	2025	2030	
Ancón Sur - Guayabal 110	462	6	0	0	0	
Ancón Sur - Envigado 110	462	9	6	6	6	
Envigado - Rodeo 110	462	6	6	9	12	
Total	21	12	15	18		

	Inyección Óhmica				
Lugar de Inyección	2021	2022	2025	2030	
Ancón Sur - Guayabal 110	2.45	0	0	0	
Ancón Sur - Envigado 110	3.68	2.45	2.45	2.45	
Envigado - Rodeo 110	2.45	2.45	3.68	4.9	

		Número de SmartValve 1000-1800					
Lugar de Inyección	Rating (A)	2021	2022	2025	2030		
Envigado- Guayabal 110	462	6_	3	3	3		
Ancón Sur - Envigado 110	462	0	3	6	6		
Guayabal- Rodeo 110	462	3	3	3	3		
Total	9	9	12	12			


	Inyección Óhmica Máxima			
Lugar de Inyección	2021	2022	2025	2030
Envigado- Guayabal 110	2.45	1.23	1.23	1.23
Ancón Sur - Envigado 110	0	1.23	2.45	2.45
Guayabal- Rodeo 110	1.23	1.23	1.23	1.23

Objetivos del piloto

Validar en un ambiente controlado las premisas operativas de la tecnología D-FACTS al incorporarla al sistema de transmisión regional y analizar las hipótesis relacionadas a la confiabilidad, disponibilidad, efectividad e impacto de los dispositivos en el flujo de potencia.

Realizar pruebas intensivas que buscaban dar señales al sector eléctrico sobre la efectividad y la confiabilidad de la tecnología

Facilitar la asimilación tecnológica y la incorporación técnica y regulatoria de esta tecnología en los diferentes proyectos que están planteados en los planes de expansión del sector.

Secuencia Instalación, pruebas y desarrollo piloto

Dic 12 2020:

 Recepción de los equipos Feb 10 – Feb 12:

 Proceso de pruebas Feb 22 – Feb 26:

L-V [P8 - P17]

 Modo impedancia capacitiva. Marzo 08 en adelante:

• L-D [1 - 7], [8 - 12], [13 - 17], [18 - 24]

 Cambio modo y valor objetivo entre intervalos Junio 22:

Cambio de ajuste Bypass 1 de 1215 a 3563 A pico.

Agosto 15;

Fin del piloto

Ene 04 – Ene 15:

 Proceso de montaje Feb 15 - Feb 19:

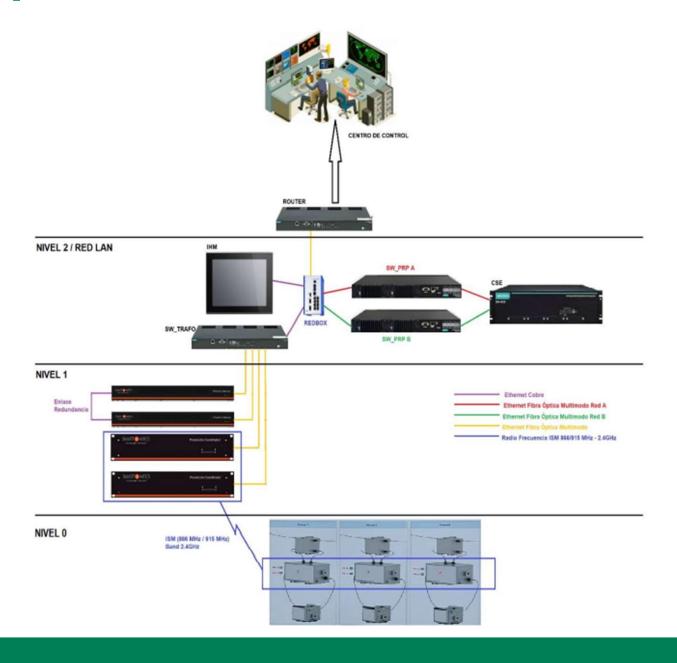
L-V [P8 - P17]

 Modo inyección impedancia Inductiva

Mar 01- Mar 05:

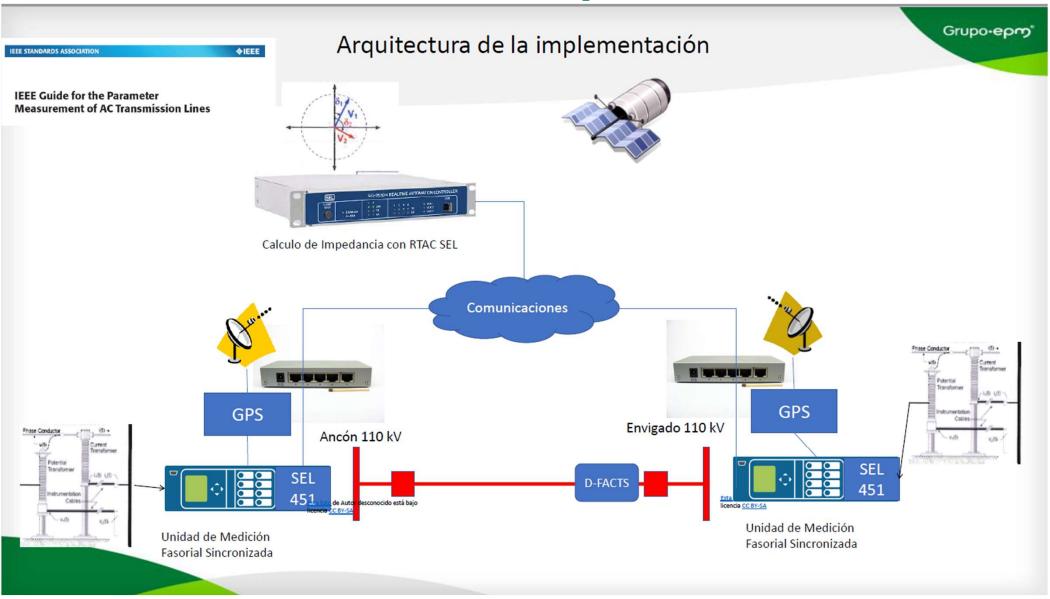
L-V

- [P8 P17]
- Cambio modo entre días
- Cambio valor objetivo cada hora.


Junio 18:

Se programó envío de las señales análogas de forma cíclica en el protocolo IEC104 Julio 6:

- Nuevo firmware
- No operación por debajo de 200 A

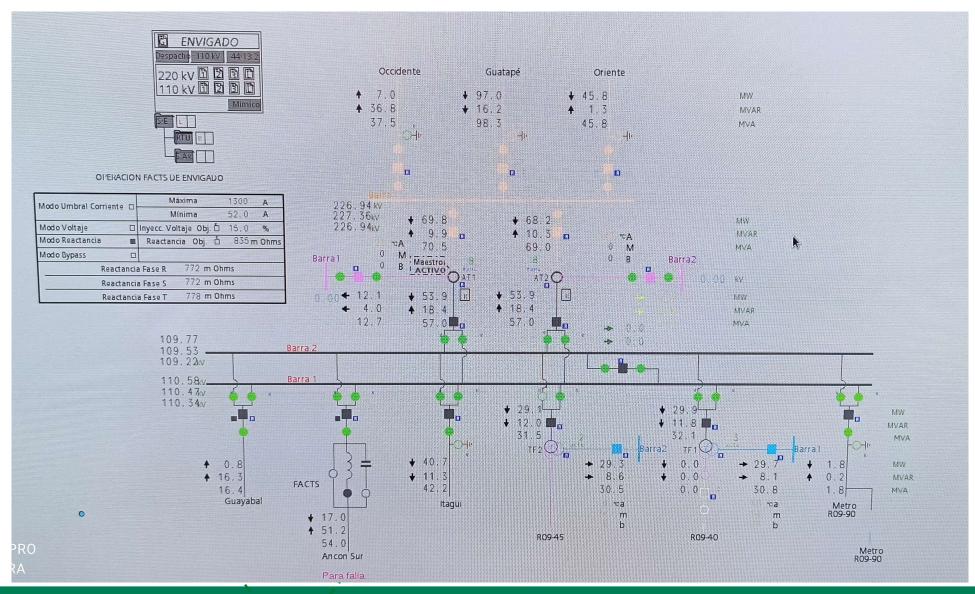


Arquitectura Comunicaciones Piloto D-FACTS



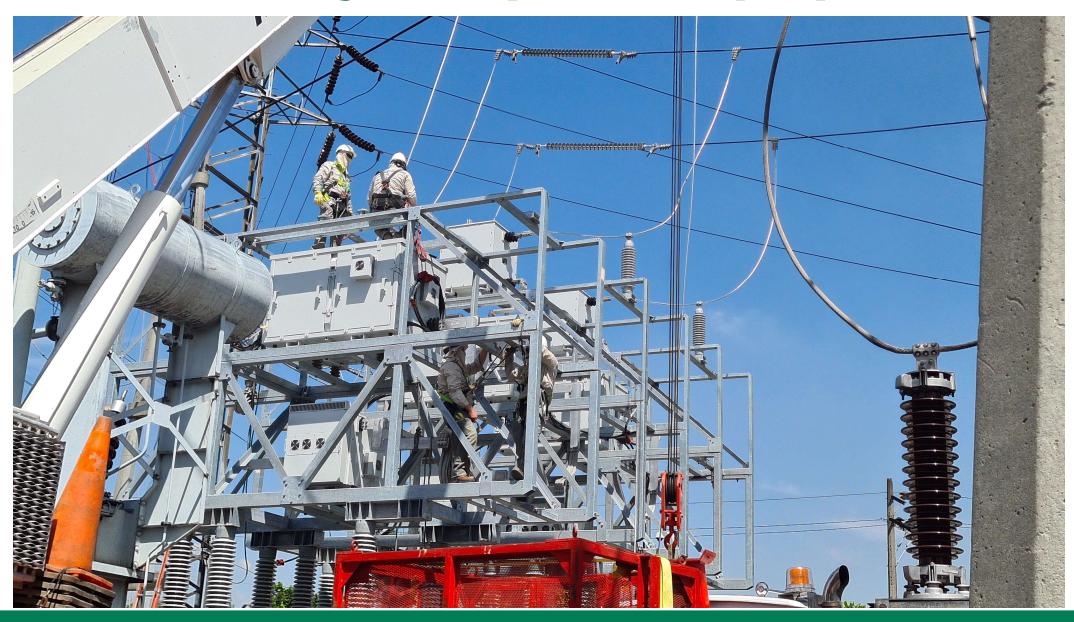
Medición de Impedancia

Equipos de control, comunicaciones y medición instalados

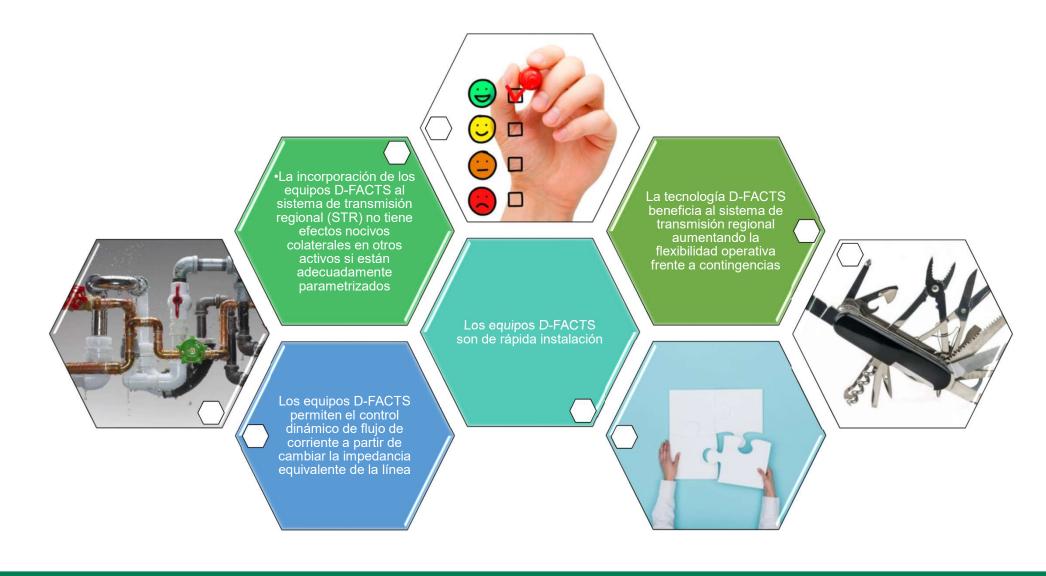


Control de los D-FACTS desde HMI

DESPLIEGUE SCADA DESARROLLADO



Montaje con personal propio


Equipos D-FACTS Instalados

Hipótesis del Proyecto Piloto D-FACTS

Vigilada Mineducación

