

Acuerdo Específico 7 Uniandes – CNO Presentación CNO 708 María Alejandra Vargas Torres, Camilo Sedano Quiroz, M.Sc., Nelson Salazar Peña, M.Sc., Oscar Salamanca Gómez, M.Sc., Andrés González Mancera, Ph.D.

> Departamento de Ingeniería Mecánica Universidad de los Andes Bogotá D.C., 14 de julio de 2023

Protocolos Acuerdo Específico 7

CREG 101 006 – Eólica	CREG 101 007 – Solar
1. Declaración de series de datos para el cálculo de la ENFICC	1. Declaración de series de datos para el cálculo de la ENFICC
2. Guía de requerimientos mínimos de la medición, buenas prácticas y protocolo de verificación de datos en sitio	2. Guía de requerimientos mínimos de la medición, buenas prácticas y protocolo de verificación de datos en sitio.
3. Criterios para identificación de datos inválidos	3. Criterios para identificación de datos Inválidos
4. Metodología MCP	4. Metodología MCP
5. Listado entidades fuentes secundarias	5. Listado entidades fuentes secundarias
6. Extrapolación altura	6. Actualización de series de tiempo
7. Actualización de series de tiempo	7. Modelamiento plantas
8. Modelamiento plantas	8. Revisión periódica del modelo
9. Revisión periódica del modelo	

Protocolos Plantas Eólicas (CREG 101 006)

(01-07) Declaración y actualización de series para cálculo de ENFICC

- Las series históricas de velocidad y dirección de viento, temperatura ambiente y presión atmosférica se deben reportar para un periodo continuo de mínimo 10 años en resolución horaria.
- Las series históricas se deben declarar iniciando en Diciembre 1 a las 00:00 horas y terminando en Noviembre 30 a las 23:00 horas del último año disponible.
- Como máximo se aceptarán series que terminen 3 años antes del año de la declaración.
- En caso de no contar con 10 años de datos de medición en el sitio de la planta, se podrá utilizar **información secundaria** en resolución horaria.
- Para los períodos de tiempo en los que se cuenta con datos medidos en sitio, éstos deben ser reportados en lugar de los valores de la serie ajustada.

(01-07) Declaración y actualización de series para cálculo de ENFICC

Para la actualización de series históricas:

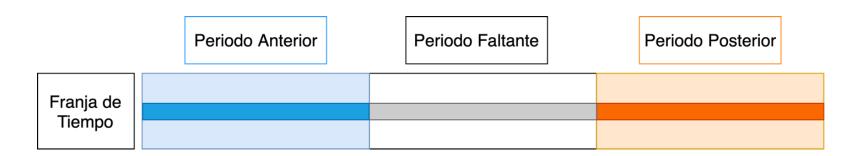
- 1. Extender la serie inicialmente reportada hasta el 30 de noviembre del año anterior al año en que se está haciendo la actualización:
 - a. Para los períodos donde se cuente con datos medidos en sitio, estos deben ser usados.
 - b. Para los períodos donde no se cuente con mediciones en sitio, se podrá utilizar información secundaria en resolución horaria.
- 2. A la serie extendida se le aplicará uno de los siguientes dos procedimientos, según sea el caso:
 - a. Si la serie todavía contiene datos de fuentes secundarias, los datos más viejos serán descartados hasta que la serie contenga 10 años continuos de información medida.
 - b. Si todos los datos de la serie corresponden a datos medidos en el sitio de la planta, la serie a declarar podrá incluir todos los datos disponibles. En ese caso se pueden declarar series de más de 10 años de longitud.

(02) Requerimientos mínimos para la medición, buenas prácticas y verificación de datos en sitio

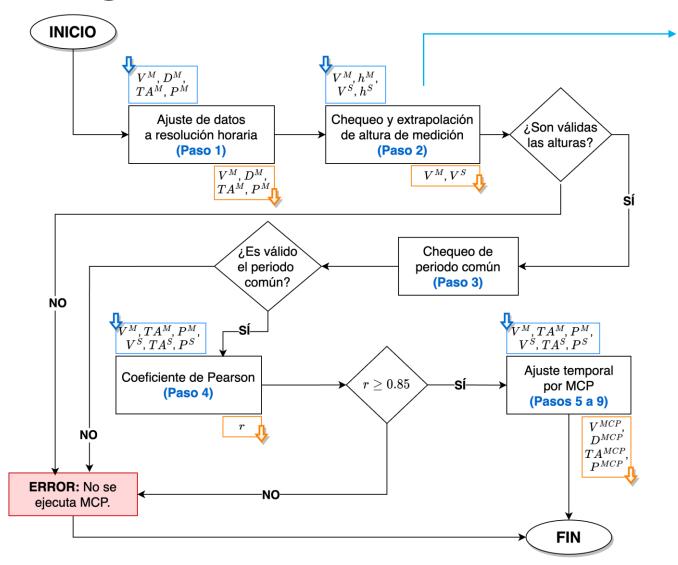
- Se define *sitio de la planta* como el círculo centrado en el polígono cubierto por las unidades de generación con radio igual al *radio de representatividad* definido según la complejidad del terreno; i.e., máximo 10 km para terreno simple y máximo 2 km para terreno complejo.
- Se define **área del proyecto** como el área cubierta por el círculo de hasta 30 km de radio, centrado en el polígono cubierto por las unidades de generación.
- Se deben construir las series calculando el promedio simple de los datos obtenidos en un periodo de 10 minutos, a excepción de la dirección del viento cuyo promedio debe ser vectorial, tomando los datos con una frecuencia de muestreo de 1 Hz o superior.
- Se actualizaron los procedimientos existentes con base en los estándares ISO 17025, IEC 61400-12-1:2022, IEC 61400-12-2:2022, IEC 61400-50-1:2022, IEC 61400-50-2:2022, MEASNET:2023, WMO Vol. 1:2021 y WMO Vol. 3:2021.
- Los datos inválidos y/o ausentes deben detectarse a partir de rutinas de validación como (1.)
 verificaciones generales del sistema (i.e., registro de datos, secuencia de tiempo); y (2.)
 verificación de parámetros medidos (i.e., pruebas de rango, pruebas relacionales, pruebas de tendencia). El llenado de dichos datos puede realizarse con mediciones de sensores redundantes.

(03) Identificación y tratamiento de datos inválidos

- Si la serie de datos filtrada con resolución diezminutal presenta datos en total más del 10% de datos ausentes, dicha serie de datos no es aceptable.
- Identificación de datos inválidos con metodología estadística de rango intercuartílico.


$$Q_1 - 1.5 \cdot IQR \le V, D, TA, P \le Q_3 + 1.5 \cdot IQR$$

$$IQR = Q_3 - Q_1$$


• Tabla de búsqueda de primer (Q_1) y tercer (Q_3) cuartil para cada hora de cada mes. Se debe definir una tabla de búsqueda por serie de datos.

(03) Identificación y tratamiento de datos inválidos

- Identificar el periodo faltante.
- 2. Identificar los datos de los **periodos anterior y posterior** correspondientes a la misma franja de tiempo (deben tener el **mismo número de días** del periodo faltante).
 - a. Si no se alcanza a tener el mismo número de días del período faltante, se debe **extender** el periodo faltante hasta que tengan el mismo número de días del periodo faltante.
- Realizar el llenado de datos ausentes.
 - a. En caso de haber datos ausentes en un único día, el llenado es a partir del promedio simple.
 - b. En caso de haber datos ausentes en varios días consecutivos para una misma franja de tiempo, el llenado es con una distribución normal.

(04) Metodología MCP

Extrapolación por altura sectorial (cada 60° según dirección del viento).

(05) Entidades con información secundaria

- La fuente secundaria debe tener información para la velocidad de viento (m/s), dirección de viento relativo al norte geográfico (°), temperatura ambiente (°C) y presión atmosférica (hPa).
- La resolución temporal mínima debe ser horaria; se recomienda resolución diezminutal.
- El CNO revisará el listado por lo menos una vez al semestre para incorporar nuevas entidades o
 para retirar aquellas con las que se hayan identificado problemas. Los agentes generadores podrán
 solicitar de manera extraordinaria la inclusión o eliminación de una fuente secundaria.

Entidad	URL
Vaisala	https://www.3tier.com/
UL Solutions	https://windnavigator.ul-renewables.com/index.php/login
Vortex	https://vortexfdc.com/
NREL	https://www.re-explorer.org/re-data-explorer/subscribe
COPERNICUS	https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset
NASA	https://disc.gsfc.nasa.gov/datasets?project=MERRA-2
Meteoblue	https://www.meteoblue.com/en/historyplus
NOAA NCEP CFRS	https://cfs.ncep.noaa.gov/cfsr/

(06) Extrapolación a la altura de buje

Velocidad del Viento

Temperatura Ambiente

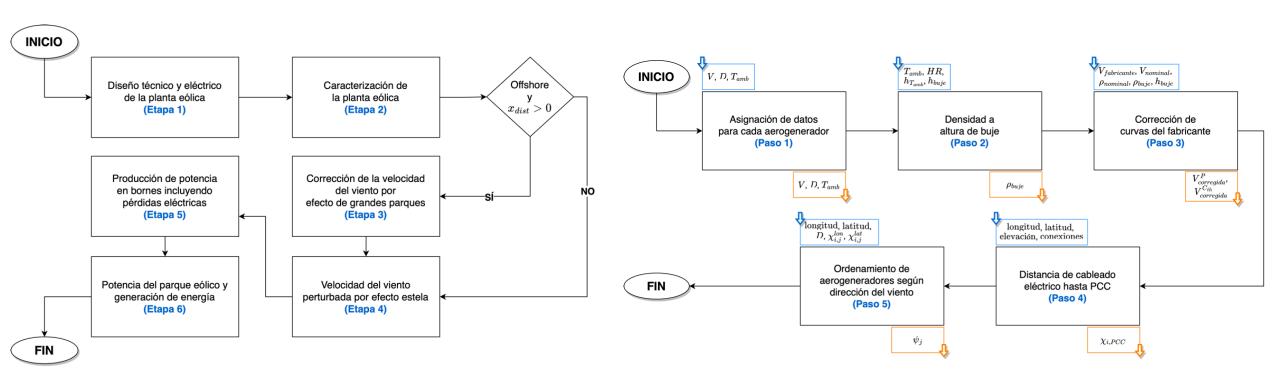
$$V_{buje} = V \cdot \left(\frac{h_{buje}}{h}\right)^{\alpha}$$

$$TA_{buje} = \left((TA + 273.15) - 6.5 \cdot \left(\frac{h_{buje} - h_{TA}}{1000} \right) \right) - 273.15$$

El parámetro α es el **cortante del viento** y su cálculo depende del número de alturas de medición en sitio.

1 Altura

$$\alpha = \frac{0.37 - 0.088 \ln(V^M)}{1 - 0.088 \ln(h^M)}$$


2 Alturas

$$\alpha = \frac{\ln(V_2^M / V_1^M)}{\ln(h_2^M / h_1^M)}$$

3+ Alturas

$$\alpha = \text{pendiente}([\ln(V_1^M), ..., \ln(V_i^M)], [\ln(h_1^M), ..., \ln(h_i^M)])$$

(08-09) Metodología, revisión y actualización de modelamiento

(08-09) Metodología, revisión y actualización de modelamiento

- Como máximo cada cinco (5) años se realizará una revisión de la metodología de modelamiento energético de las plantas eólicas usada para el cálculo de la ENFICC.
- El CNO estará encargado de la revisión y actualización del modelamiento energético para el cálculo de la ENFICC de plantas eólicas. El plazo máximo para la revisión y actualización del modelo es de 4 meses calendario. Una vez se ha acordado la nueva metodología, el CND contará con 4 meses calendario para la implementación de los nuevos modelos en el aplicativo.
- Especificaciones (documentos base, alcance, actividades de la firma contratada y tolerancia) para:
 - Auditoría de la curva de potencia del aerogenerador con respecto a la velocidad del viento.
 - 2. Auditoría de parámetros de diseño técnico y eléctrico de la planta eólica.
 - 3. Auditoría de las series tiempo reportadas para el cálculo de la ENFICC.
 - 4. Auditoría de la **producción de energía de la planta eólica**. Dicha auditoria aplica únicamente para plantas eólicas que llevan al menos un (1) año en operación.

Protocolos Plantas Solares Fotovoltaicas (CREG 101 007)

(01-06) Declaración y actualización de series para cálculo de ENFICC

- Las series históricas de irradiancia global horizontal y temperatura ambiente se deben reportar para un periodo continuo de mínimo 10 años en resolución horaria.
- Las series históricas se deben declarar iniciando en Diciembre 1 a las 00:00 horas y terminando en Noviembre 30 a las 23:00 horas del último año disponible.
- Como máximo se aceptarán series que terminen 3 años antes del año de la declaración.
- En caso de no contar con 10 años de datos de medición en el sitio de la planta, se podrá utilizar información secundaria en resolución horaria.
- Para los períodos de tiempo en los que se cuenta con datos medidos en sitio, éstos deben ser reportados en lugar de los valores de la serie ajustada.

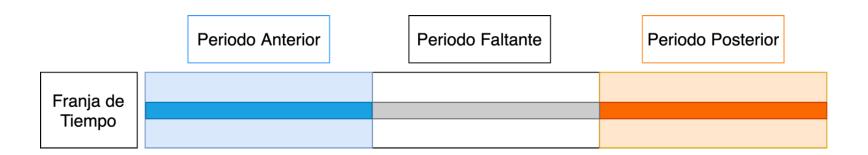
(01-06) Declaración y actualización de series para cálculo de ENFICC

Para la actualización de series históricas:

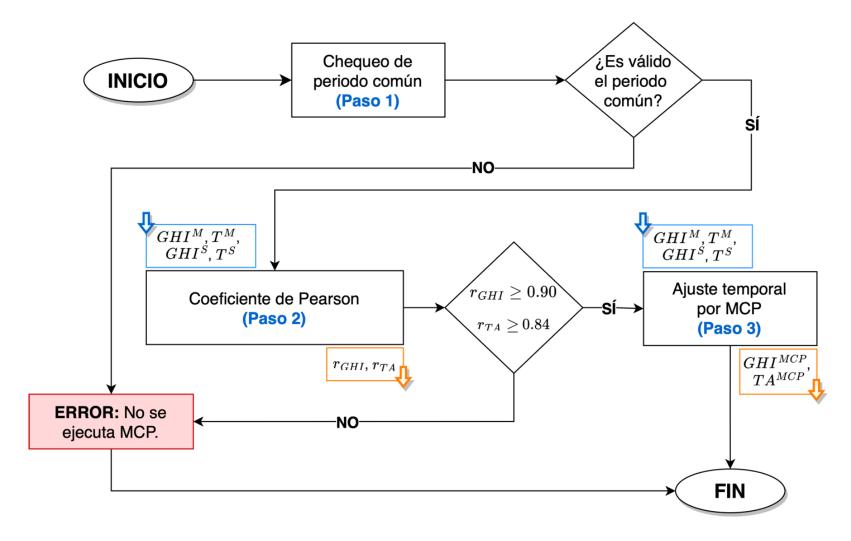
- 1. Extender la serie inicialmente reportada hasta el 30 de noviembre del año anterior al año en que se está haciendo la actualización:
 - a. Para los períodos donde se cuente con datos medidos en sitio, estos deben ser usados.
 - b. Para los períodos donde no se cuente con mediciones en sitio, se podrá utilizar información secundaria en resolución horaria.
- 2. A la serie extendida se le aplicará uno de los siguientes dos procedimientos, según sea el caso:
 - a. Si la serie todavía contiene datos de fuentes secundarias, los datos más viejos serán descartados hasta que la serie contenga 10 años continuos de información medida.
 - b. Si todos los datos de la serie corresponden a datos medidos en el sitio de la planta, la serie a declarar podrá incluir todos los datos disponibles. En ese caso se pueden declarar series de más de 10 años de longitud.

(02) Requerimientos mínimos para la medición, buenas prácticas y verificación de datos en sitio

- Se define *sitio de la planta* como el círculo centrado en el polígono cubierto por las unidades de generación con *radio de 10 km* (equivalente al radio de representatividad).
- Se define **área del proyecto** como el área cubierta por el círculo de hasta 30 km de radio, centrado en el polígono cubierto por las unidades de generación.
- Se deben **construir las series calculando el promedio simple** de los datos obtenidos en un periodo **horario**.
- Se actualizaron los procedimientos existentes con base en los estándares ISO 9847:2023, E644-11, E220-19, ISO 9060:2018, IEC 61724-1:2021, NREL Best Practices Handbook (2021), WMO Vol. 1:2021 y WMO Vol. 3:2021.
- Los datos inválidos y/o ausentes deben detectarse a partir de rutinas de validación como (1.) verificaciones generales del sistema (i.e., registro de datos, secuencia de tiempo); y (2.) verificación de parámetros medidos (i.e., pruebas de rango, pruebas relacionales, pruebas de tendencia). El llenado de dichos datos puede realizarse con mediciones de sensores redundantes.


(03) Identificación y tratamiento de datos inválidos

- Si la serie de datos filtrada con resolución horaria presenta datos en total más del 10% de datos ausentes, dicha serie de datos no es aceptable.
- Identificación de datos inválidos con metodología física de BSRN (solo cuando el ángulo cenital del sol $Z > 90^\circ$) y estadística de rango intercuartílico (tabla de búsqueda de Q_1 y Q_3 para cada hora de cada mes).


$$-4 \le GHI \le I_0 \cdot (\cos(Z))^{1.2} + 100$$

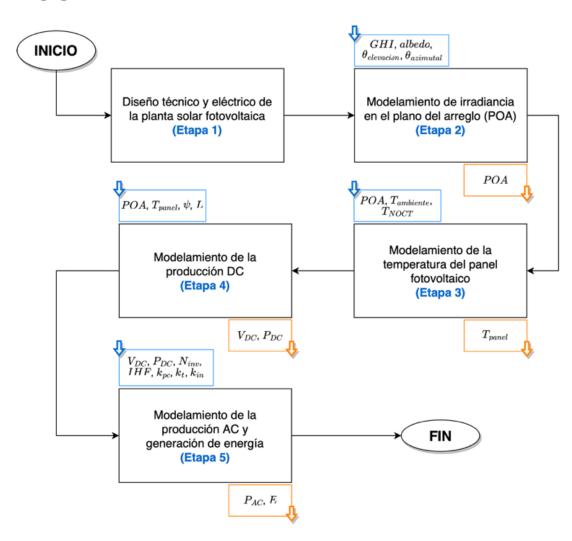
$$Q_1 - 1.5 \cdot IQR \le GHI, TA \le Q_3 + 1.5 \cdot IQR$$

$$IQR = Q_3 - Q_1$$

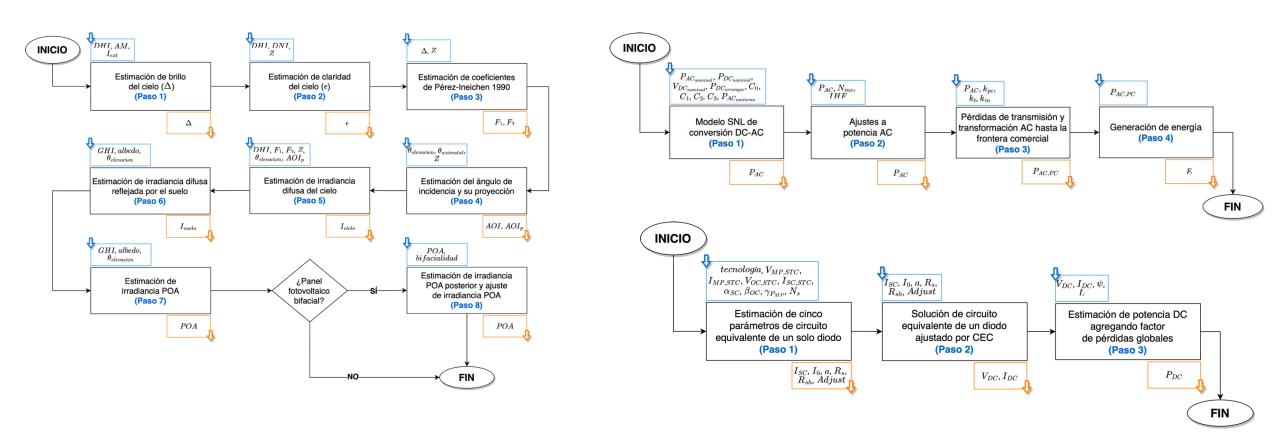
(03) Identificación y tratamiento de datos inválidos

- Identificar el periodo faltante.
- 2. Identificar los datos de los **periodos anterior y posterior** correspondientes a la misma franja de tiempo (deben tener el **mismo número de días** del periodo faltante).
 - a. Si no se alcanza a tener el mismo número de días del período faltante, se debe **extender** el periodo faltante hasta que tengan el mismo número de días del periodo faltante.
- 3. Realizar el llenado de datos ausentes.
 - a. En caso de haber datos ausentes en un único día, el llenado es a partir del promedio simple.
 - b. En caso de haber datos ausentes en varios días consecutivos para una misma franja de tiempo, el llenado es con una distribución normal.

(04) Metodología MCP



(05) Entidades con información secundaria


- La fuente secundaria debe tener información para la irradiancia global horizontal (W/m²) y temperatura ambiente (°C).
- La resolución temporal mínima debe ser horaria.
- El CNO revisará el listado por lo menos una vez al semestre para incorporar nuevas entidades o
 para retirar aquellas con las que se hayan identificado problemas. Los agentes generadores podrán
 solicitar de manera extraordinaria la inclusión o eliminación de una fuente secundaria.

Entidad	URL
Vaisala	https://www.3tier.com/
NREL	https://nsrdb.nrel.gov/data-sets/international-data
Solargis	https://solargis.com/
Meteotest	https://meteotest.ch/en/product/meteonorm
DNV	https://solcast.com/
Meteoblue	https://www.meteoblue.com/en/historyplus
COPERNICUS	https://cds.climate.copernicus.eu/cdsapp#!/search?type=dataset

(07-08) Metodología, revisión y actualización de modelamiento

(07-08) Metodología, revisión y actualización de modelamiento

(07-08) Metodología, revisión y actualización de modelamiento

- Como máximo cada cinco (5) años se realizará una revisión de la metodología de modelamiento energético de las plantas solares fotovoltaicas usada para el cálculo de la ENFICC.
- El CNO estará encargado de la revisión y actualización del modelamiento energético para el cálculo de la ENFICC de plantas solares fotovoltaicas. El plazo máximo para la revisión y actualización del modelo es de 4 meses calendario. Una vez se ha acordado la nueva metodología, el CND contará con 4 meses calendario para la implementación de los nuevos modelos en el aplicativo.
- Especificaciones (documentos base, alcance, actividades de la firma contratada y tolerancia) para:
 - 1. Auditoría de la **curva de potencia alterna (AC) respecto a la potencia directa (DC)** a niveles de voltaje DC mínimo, nominal y máximo.
 - 2. Auditoría de parámetros de diseño técnico y eléctrico de la planta solar fotovoltaica.
 - 3. Auditoría de las **series tiempo reportadas** para el cálculo de la ENFICC.
 - 4. Auditoría de la **producción de energía de la planta solar fotovoltaica**. Dicha auditoria aplica únicamente para plantas eólicas que llevan al menos un (1) año en operación.

Acuerdo Específico 7 Uniandes – CNO Presentación CNO 708 María Alejandra Vargas Torres, Camilo Sedano Quiroz, M.Sc., Nelson Salazar Peña, M.Sc., Oscar Salamanca Gómez, M.Sc., Andrés González Mancera, Ph.D.

> Departamento de Ingeniería Mecánica Universidad de los Andes Bogotá D.C., 14 de julio de 2023