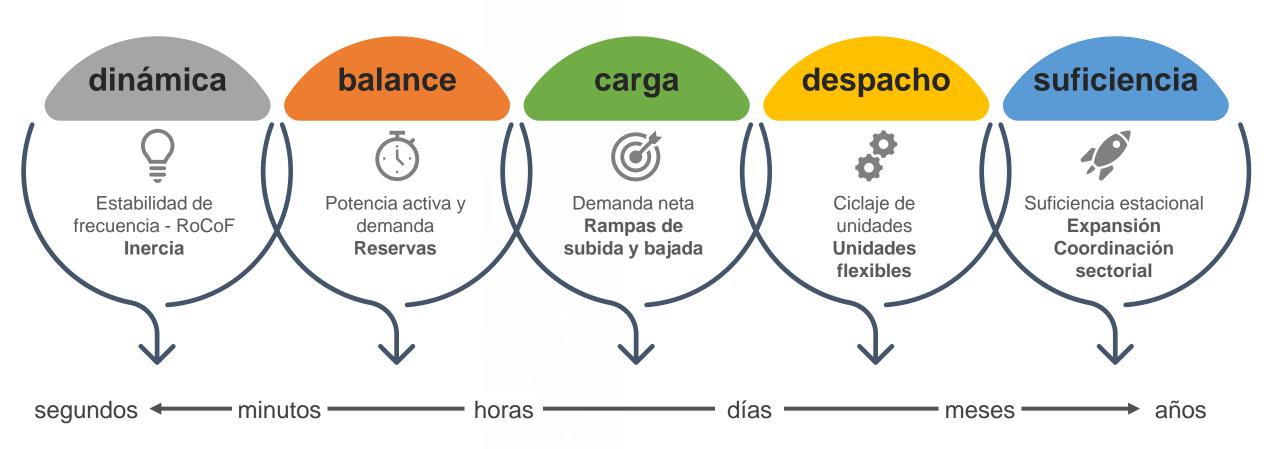


Análisis de flexibilidad del SIN

Escenarios de operación 2021-2022 y 2024-2025

CNO - febrero 2021


Contenido

- 1. Motivación
- Definición de flexibilidad
- 3. Metodología para el cálculo de la flexibilidad en el SIN
- 4. Análisis de flexibilidad
 - Horizonte de operación 2021-2022
 - Horizonte de operación 2024-2025
 - Sensibilidad con la entrada en operación de Ituango
- 5. Conclusiones y recomendaciones

Motivación

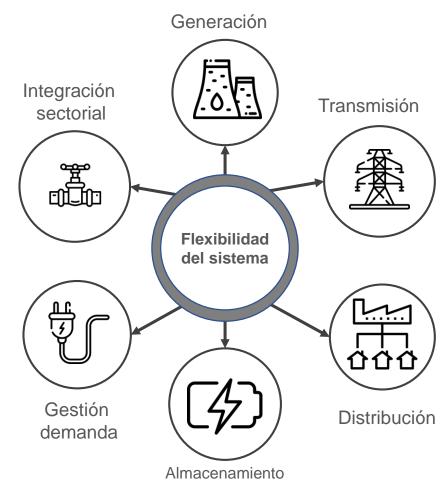
Incertidumbre – Variabilidad – Generación no síncrona y distribuida

Antecedentes

- En el año 2018, IRENA hizo el primer estudio de flexibilidad para el SIN, utilizando la herramienta Flextool.
- En el año 2019, XM realizó su primer estudio de flexibilidad teniendo en cuenta el portafolio de proyectos de generación y transmisión a 2023.
- A 2020, el portafolio de proyectos ha cambiado, el estado del arte ha avanzado y XM recibió comentarios por parte de los Agentes que permitieron mejorar el modelo y supuestos usado en el primer estudio.
- La flexibilidad se debe evaluar periódicamente para dar señales oportunas sobre la atención confiable de la demanda.

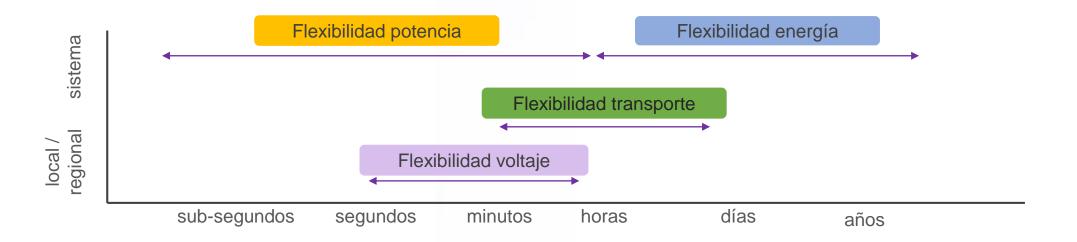
COLOMBIA POWER SYSTEM FLEXIBILITY ASSESSMENT

IRENA FLEXTOOL CASE STUDY


Definición de flexibilidad

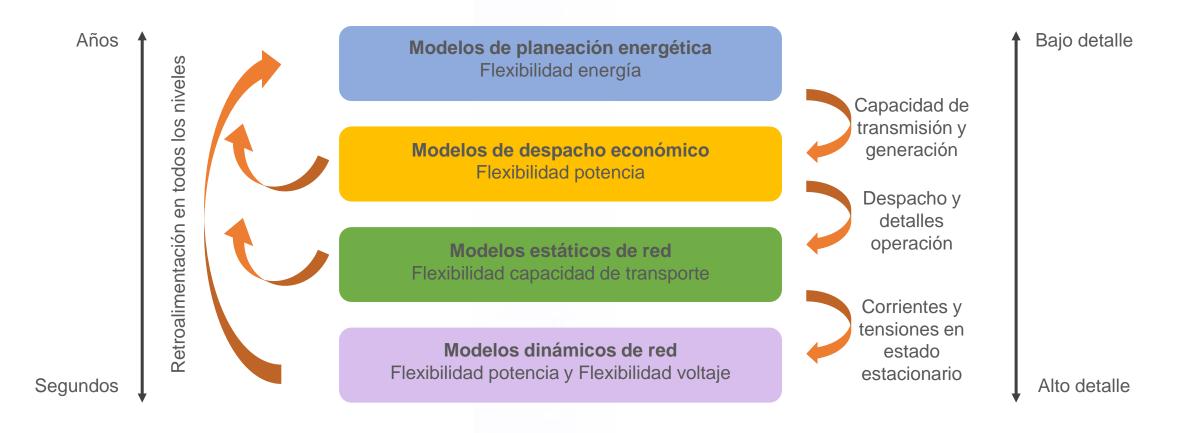
La habilidad que tiene el sistema para responder a las diferentes condiciones de cambio en el balance generación-demanda, en todas las escalas y horizontes de tiempo (XM-CNO-UPME)

Un sistema se considera flexible si puede, de forma económica y confiable [3-4]:


- ☐ Satisfacer picos de demanda evitando energía no suministrada
- ☐ Mantener el equilibrio de la oferta y la demanda
- ☐ Garantizar disponibilidad de **rampas**
- ☐ Contar con **almacenamiento** suficiente para gestionar horas de baja demanda y alta producción de FERNC y viceversa
- ☐ Ajustar la demanda para responder a ante escasez de suministro o sobregeneración

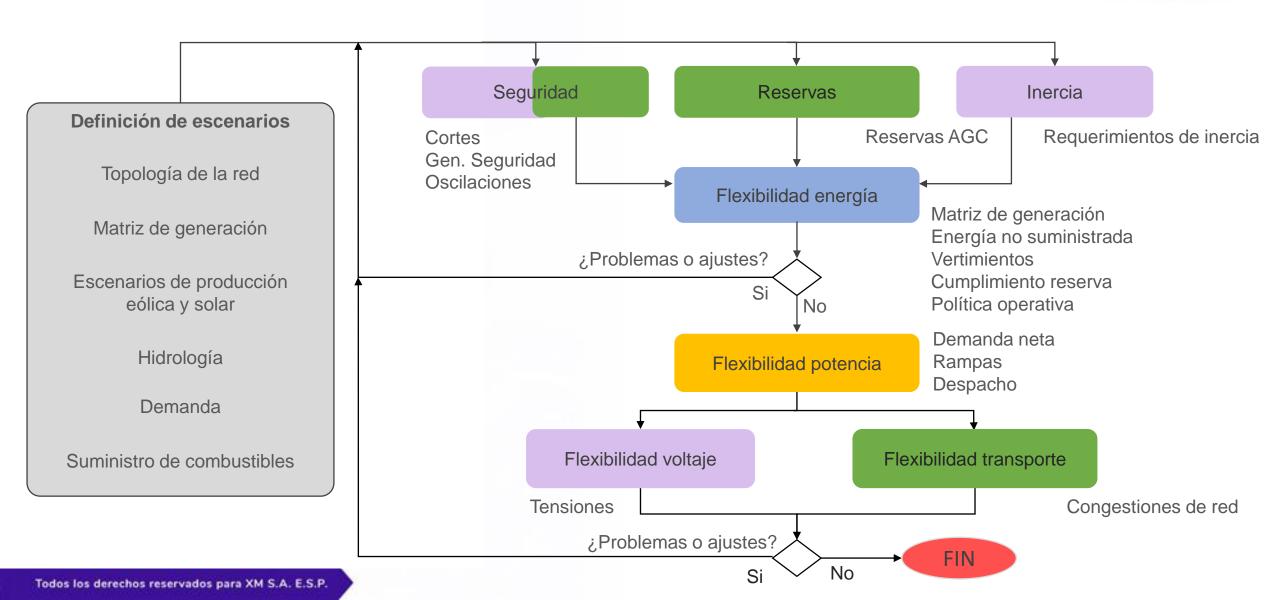
Clases de flexibilidad

Necesidad de potencia, energía, voltaje y capacidad de transporte



- Flexibilidad por energía: Asegurar el suministro futuro de electricidad en el mediano y largo plazo: almacenamiento, combustibles, mantenimientos.
- Flexibilidad por potencia: Mantener el balance generación – demanda garantizando estabilidad de frecuencia: Control de potencia activa, reservas, demanda, rampas.
- Flexibilidad por capacidad de transporte: Habilidad para transportar energía manteniendo la seguridad: congestiones, n-1, estabilidad, esquemas de protección.
- Flexibilidad por voltaje: Habilidad de proveer potencia reactiva para mantener los niveles de tensión: FACTS, taps, reactiva.

Evaluación la flexibilidad

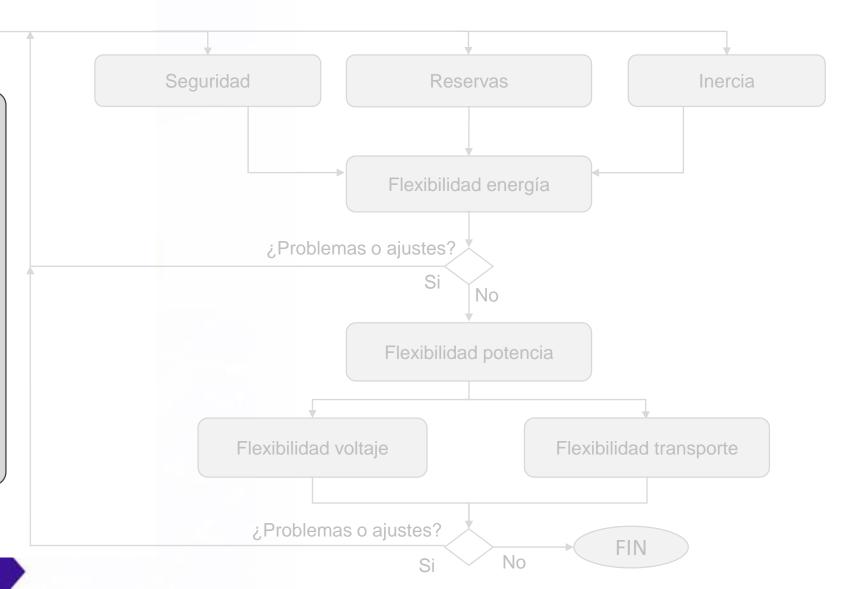

Modelos y horizontes

Todos los derechos reservados para XM S.A. E.S.P.

Metodología de XM para la evaluación de flexibilidad

Metodología de XM para la evaluación de flexibilidad

Topología de la red


Matriz de generación

Escenarios de producción eólica y solar

Hidrología

Demanda

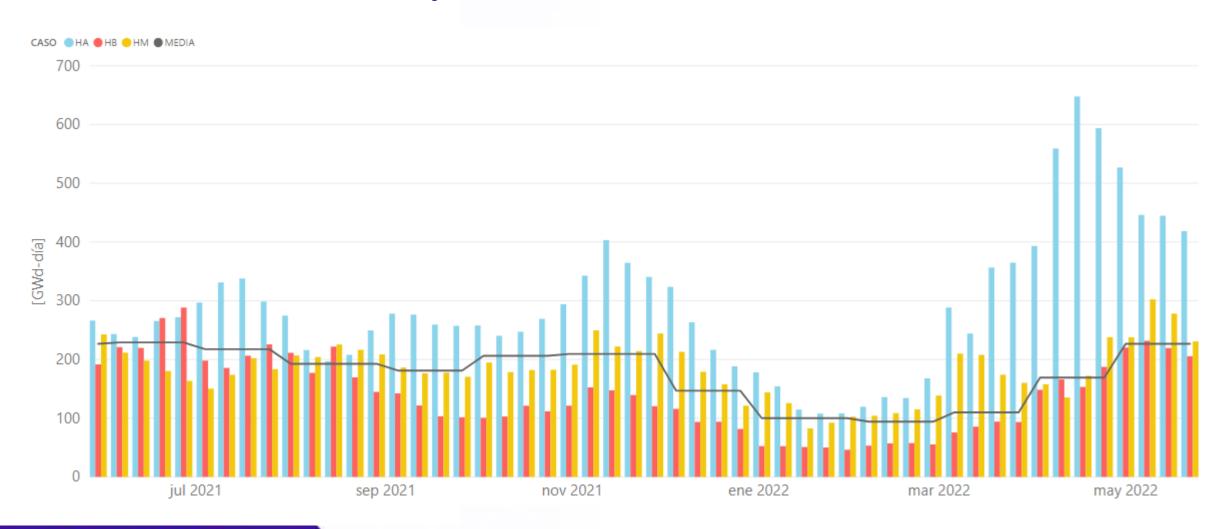
Suministro de combustibles

Objetivo y escenarios

Evaluar los diferentes tipos de flexibilidad en el sistema eléctrico Colombiano para los años 2021-2022 y 2024-2025* ante la integración de FERNC y desarrollo de proyectos de transmisión en diferentes condiciones climáticas.

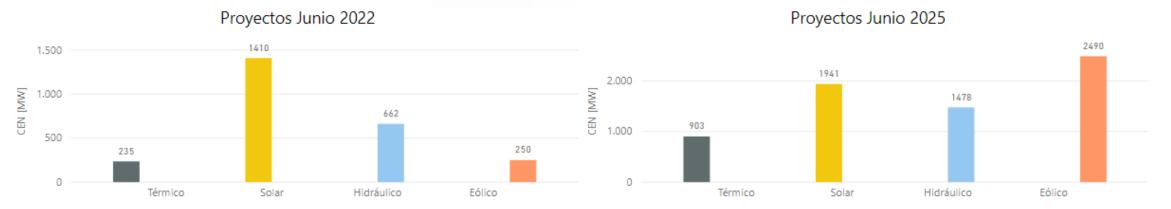
A ~ a blatí da a	Año biotários Hidrología Corios FEDNO		Proyectos de Generación y Transmisión	
Año histórico	Hidrología	Series FERNC	2021-2022*	2024-2025*
2015-2016	Baja	Histórico 2015-2016		
2013-2014	Media	Histórico 2013-2014		
2010-2011	Alta	Histórico 2010-2011		
Demanda UPME Resultante				

Gas: Costos y disponibilidad de combustible y contratos usados en el planeamiento operativo XM

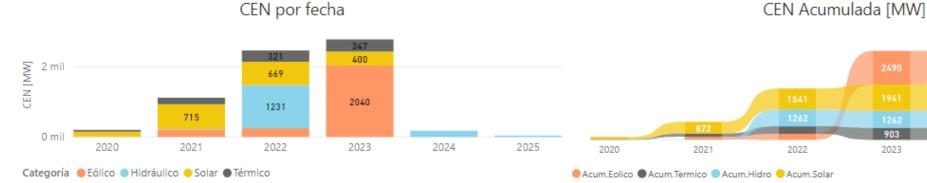

Características técnicas reportadas por los agentes (hidráulicas y térmicas)

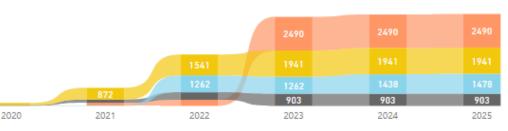
Interconexión: autónomo

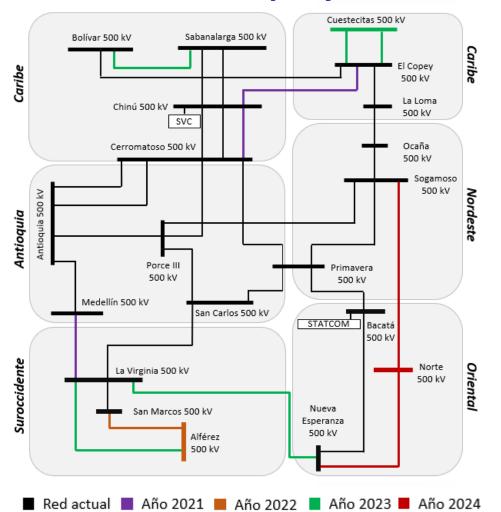
Curva CAR y desbalances usados en el planeamiento operativo XM


XM Surrando energias

Insumos: Escenarios de aportes




Insumos: Escenarios de proyectos de generación

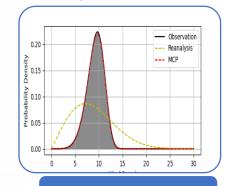


Insumos: Escenarios de proyectos de transmisión

Proyecto	L km	FPO
Chinú – Cerromatoso 3 500 kV	136	Marzo 2021
Chinú – El Copey 500 kV	232	Marzo 2021
Medellin – La Virginia 500 kV	158	2021
San Marcos – Alférez 500 kV	35	2022
Sabanalarga - Bolívar 500 kV	64	2022
La Virginia – Alférez 500 kV	183	2023
La Virginia – Nueva Esperanza 500 kV	190	2023
La Loma – Sogamoso 500 kV	200	2023
El Copey - Cuestecitas 1 500 kV	215	2023
El Copey – Cuestecitas 2 500 kV	220	2023
Colectora – Cuestecitas 1 500 kV	220	2023
Colectora – Cuestecitas 2 500 kV	220	2023
La Loma – Cuestecitas 1 500 kV	220	2023
La Loma – Cuestecitas 2 500 kV	220	2023
Sogamoso – Norte 500 kV	257	2024
Norte – Nueva Esperanza 500 kV	85	2024

Metodología: Escenarios de producción FERNC

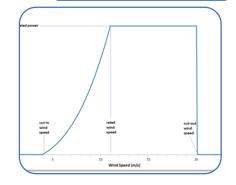
Ajustes físicos a las series de ERA5.

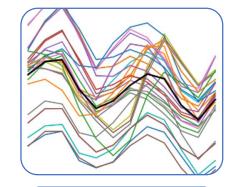


 $u = u_r \left(\frac{z}{z_r}\right)^{\alpha}$

Extracción de datos de ERA5.

La velocidad del viento se interpola a la altura de la turbina

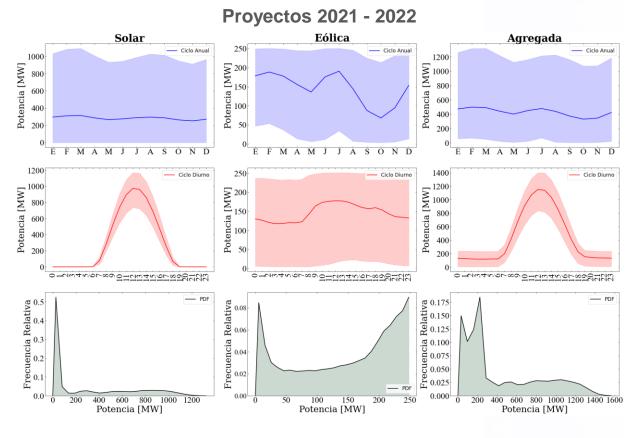

Reanálisis ERA5 de ECMWF a través del servicio Copernicus (C3S).

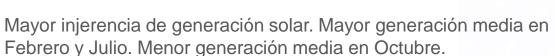


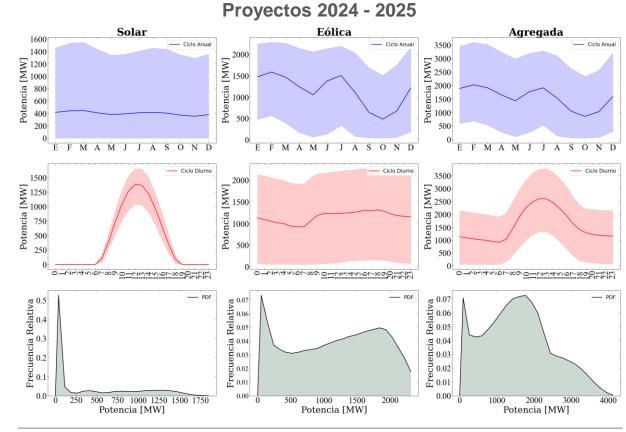
Corrección Estadística.

Se aplica el **método de**relación de varianzas para
las plantas solares y ajuste
de la distribución de Weibull
para las plantas eólicas.

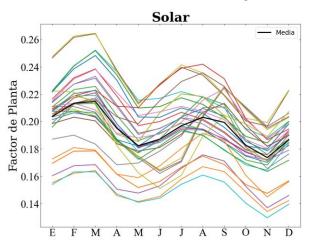
Conversión a Potencia.

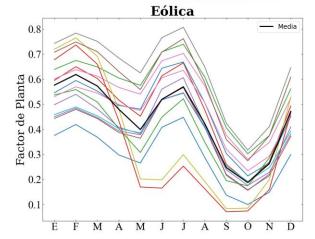


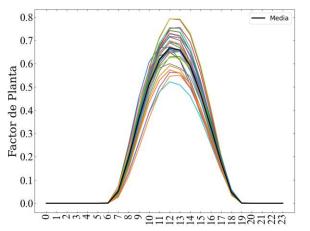

Series para Estudio de Flexibilidad

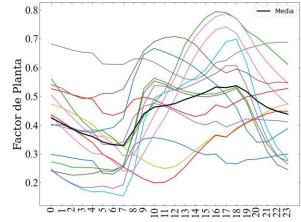

Eólicas: La potencia es calculada a través de una curva típica, ajustada a la CEN del proyecto **Solares**: Se usa la metodología definida en la Resolución CREG 201 de 2017 adaptada según supuestos

Resultados: Comportamiento histórico de las series




Z021-20222024-2025Generación total mas probable0-400 MW0-1600 MWVariaciones ciclo diurno promedio1000 MW2000 MWCiclo mensual medio500 MW1500 MW




Resultados: Factor de planta según histórico de las series

Proyectos 2024 - 2025

PLANTAS SOLARES

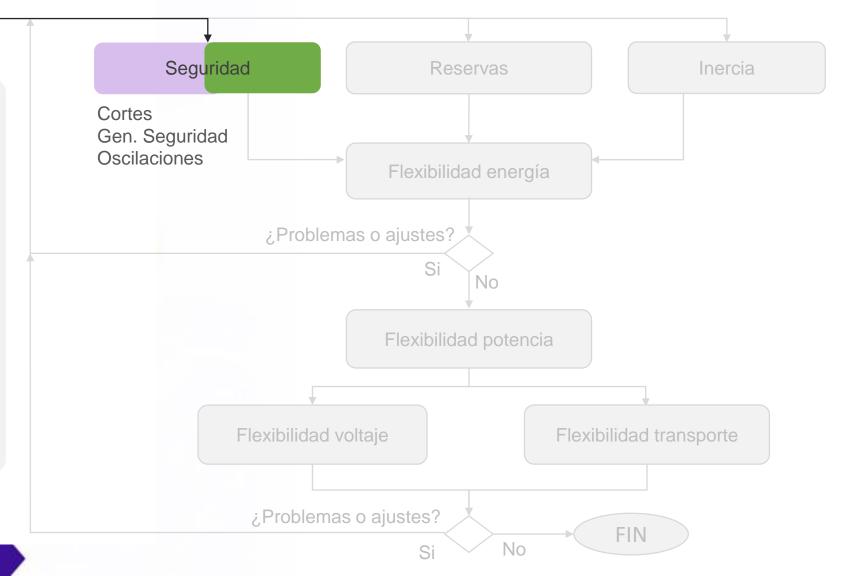
- El FP de las plantas solares varía entre **0.1 y 0.27** (valores medios) a lo largo del año.
- Los mayores valores de FP de las plantas solares se observan en los meses de Febrero y Agosto (meses de mayor generación).
- A nivel **horario**, las plantas solares presentan mayor FP entre las **11 am y la 1 pm**, variando alrededor de 0.5 a 0.8 aproximadamente.

PLANTAS EÓLICAS

- El FP de las plantas eólicas, a lo largo del año, varía entre 0.2 y 0.75 para el escenario 2021-2022 y **0.1 y 0.8** escenario 2024-2025 (valores medios).
- Los menores valores de FP de las plantas eólicas se observan en el mes de Octubre (menor generación).
- A nivel horario, las plantas eólicas presentan mayor FP durante el día, es decir, entre las 7 am y las 7 pm, variando alrededor de 0.25 y 0.8 aproximadamente.

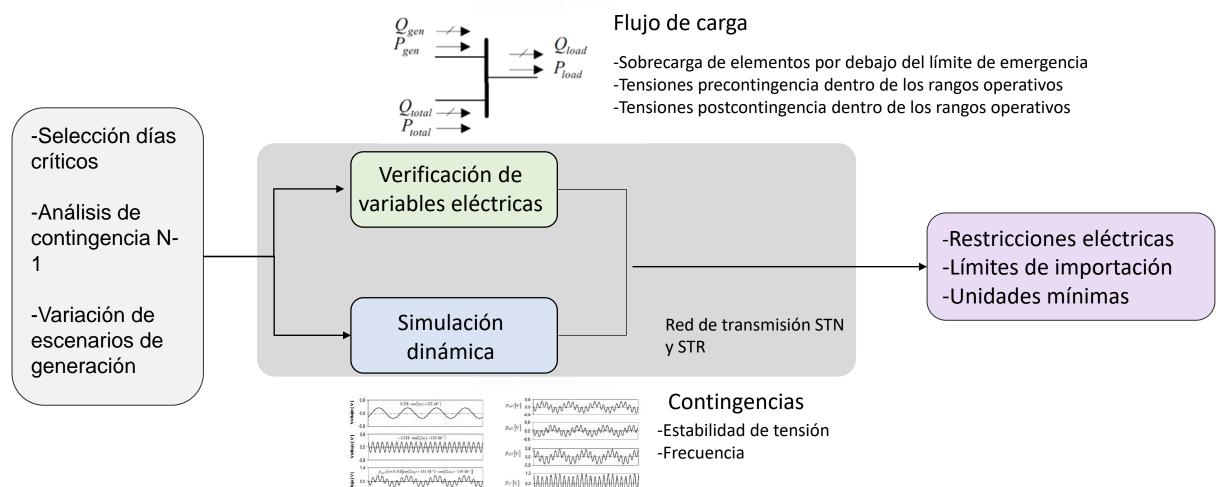
Metodología de XM para la evaluación de flexibilidad

Topología de la red

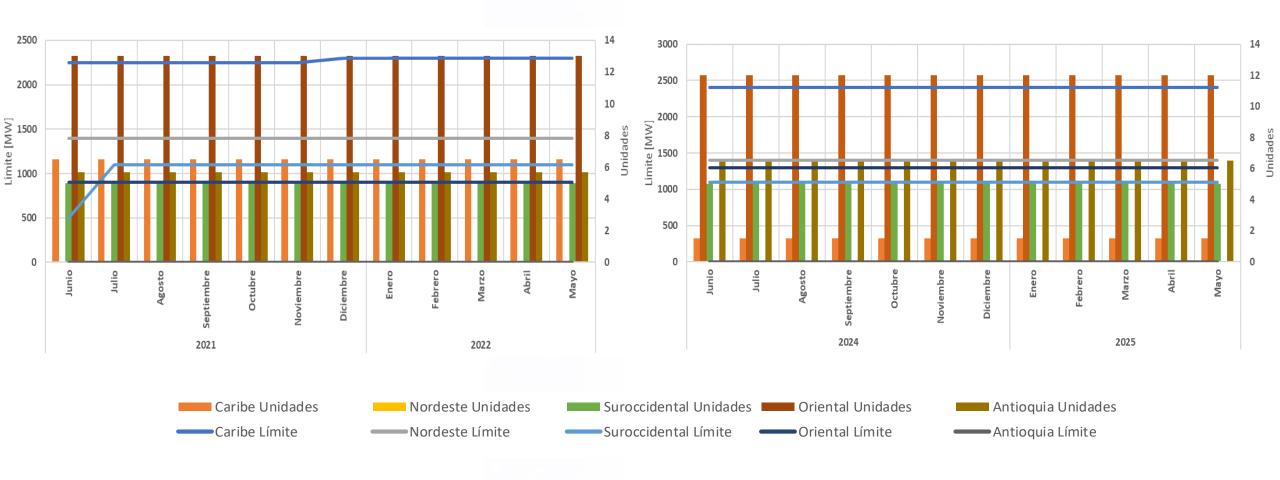

Matriz de generación

Escenarios de producción eólica y solar

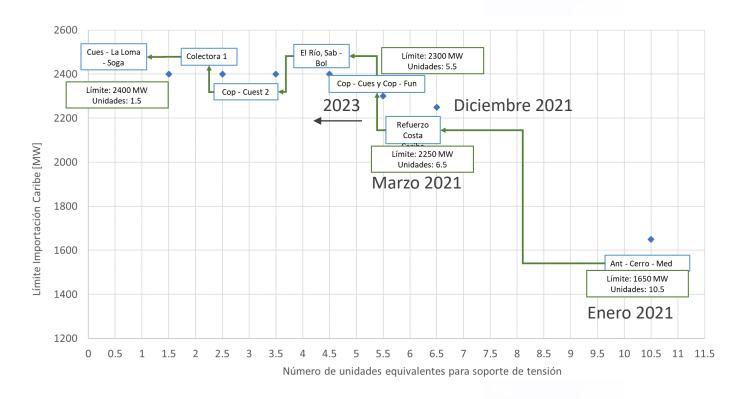
Hidrología


Demanda

Suministro de combustibles


XM Summing amorgina

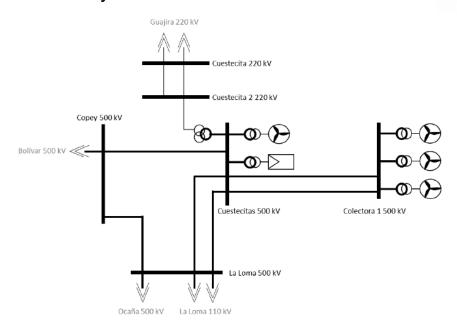
Metodología



XIII Sumando energias

Resultados Límites de importación y unidades mínimas

Área Caribe



- La expansión definida permite incrementar el límite de importación de 1500 MW a 2400 MW, además la reducción considerable de 10.5 a 1.5 unidades en escenarios de demanda máxima en el horizonte 2024-2025.
- Los proyectos de expansión definidos en la red de 500kV ocasionan altas tensiones en la subárea GCM en escenarios de baja demanda y baja producción eólica y solar. Por lo tanto, se requiere de elementos adicionales que permitan mantener la tensión dentro del rango regulatorio.
- Los recursos renovables no convencionales pueden ser considerados como generación de seguridad tanto para brindar soporte de tensión como para controlar el límite de transferencia.

Estabilidad de tensión en GCM: Análisis de contingencias

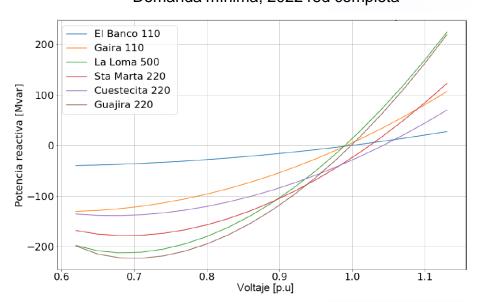
Se simulan 8 eventos de corto circuito trifásico en Cuestecitas y Colectora para máxima generación de FERNC, demanda máxima y mínima en Caribe a 2025

Demanda máxima

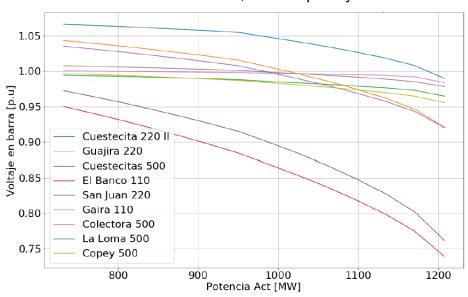
Evt	V _{max} [p.u]	V _{min} [p.u]	Sc _{max} [%]
1	1.04	0.94	97.90
2	1.08	0.92	98.30
3	1.09	0.92	98.37
4	1.08	0.92	98.36
5	1.08	0.91	101.2*
6	1.07	0.93	99.01
7	1.08	0.91	98.10
8	1.08	0.93	98.66

^{*}Sobrecarga de emergencia del 120% para este activo.

Demanda mínima


Evt	V _{max} [p.u]	V _{min} [p.u]	Sc _{max} [%]
1	1.04	0.95	69.50
2	1.04	0.94	69.50
3	1.06	0.96	80.32
4	1.06	0.95	69.81
5	1.05	0.94	96.91
6	1.08	0.97	70.83
7	1.03	0.92	68.77
8	1.03	0.90	68.81

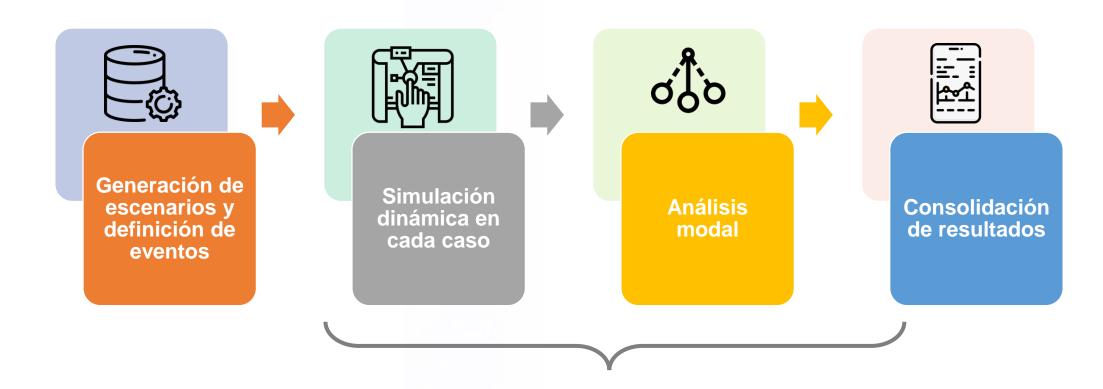
• Se espera que las contingencias en los activos próximos a las subestaciones Cuestecitas y Colectora 500 kV no ocasionen problemas importantes en la estabilidad de tensión en el área, aún en escenarios limítrofes para la seguridad y confiabilidad de esta.



Estabilidad de tensión en GCM: Limites de estabilidad

Demanda mínima, 2022 red completa

Demanda máxima 2025, red completa y eólica máxima



- Se espera que las FERNC no introduzcan problemas de estabilidad de tensión en la subárea de GCM.
- Los márgenes de estabilidad se amplían entre el 2022 y el 2025, situación asociada a las expansiones en red a 500 kV.
- Se mejora la estabilidad por colapso de tensión ante niveles de demanda activa entre el 2022 y el 2025
- En los periodos de **demanda mínima**, tanto para el 2022 como el 2025, se **esperarían altas tensiones** y sensibilidades débiles de V y Q (es decir, gran variación de V a pequeños cambios de Q). Esta **situación no es atribuible a la FERNC**.

Análisis modal

No.

Metodología

Presente: 2021

Futuro: 2024

Se filtraron modos con amortiguamiento <5%

Análisis modal

XM Sumando energias

Supuestos

Año	Caso	P4	P12	P19/P20
	Sin Ecuador	Χ		X
2021	Importando 450 MW	X	X	X
	Exportando 450 MW	X		X
2024	Sin Ecuador con FERNC	Χ	X	
	Sin Ecuador sin FERNC		X	X
	Importando 450 MW con FERNC	X	X*	Χ*
	Importando 450 MW sin FERNC	X	X	X
	Exportando 450 MW con FERNC		X	Χ
	Exportando 450 MW sin FERNC	Χ	X	Χ

Eventos

N-1 Cocacodo Sinclair

N-1 Sogamoso

N-1 Ituango

N-1 San Carlos – Virginia

N-1: Colectora – Cuestecitas

N-4: Jamondino - Pomasqui

24 casos de estudio

Análisis modal

Resultados

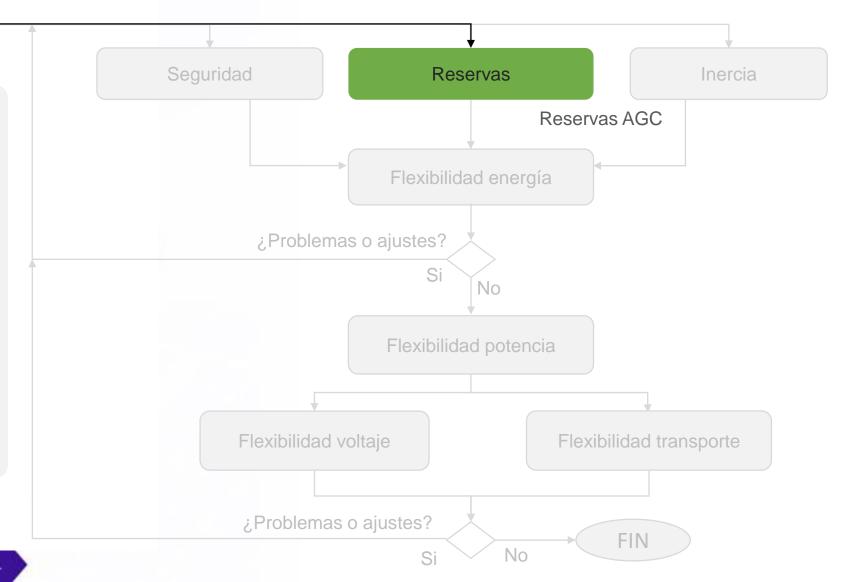
Al comparar los resultados del análisis modal considerando los casos de estudio asociados al 2021 con los asociados al 2024, se encuentra que:

- No se evidencia la excitación futura de un modo de bajo amortiguamiento que afecte la estabilidad del sistema.
- En el futuro se presentan modos de oscilación de alta frecuencia con amortiguamiento del orden del 3% que, según lo visto en las simulaciones dinámicas, no trascienden a las variables eléctricas de la red independientemente de la integración de FERNC.
- Ante la activación de la Respuesta Rápida de Frecuencia de las unidades de generación eólica, se presenta un modo en el futuro de 1,006 Hz el cual está asociado al modelo típico WECC. Este modo no trasciende a la red según las simulaciones dinámicas realizadas y, en caso de presentarse, se puede amortiguar a través del ajuste de los sistemas de control.

Dada la incertidumbre sobre las condiciones de operación futura y <u>las limitaciones que tienen los programas de simulación</u> para representar todas las dinámicas asociadas a los elementos del sistema, <u>es posible que se exciten modos no encontrados</u> en los estudios realizados. En estos casos, un **ajuste de PSSs o de controles de generación** puede realizarse para mejorar el amortiguamiento de los modos de oscilación.

Metodología de XM para la evaluación de flexibilidad

Topología de la red


Matriz de generación

Escenarios de producción eólica y solar

Hidrología

Demanda

Suministro de combustibles

Estimación de reservas

Metodología

Disparo de unidades de generación (5 años)

Errores en el pronóstico de carga (5 años)

Errores en pronóstico de generación de FERNC vs producción FERNC y PHC

Definición de fuentes de desbalance carga - generación

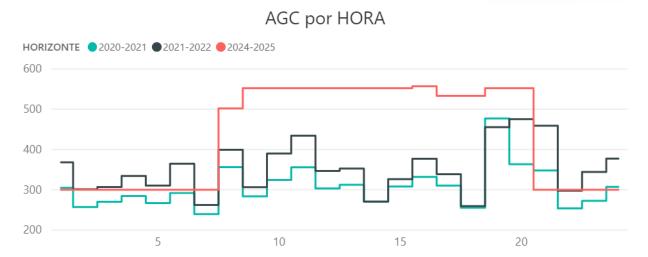
Construcción de funciones de densidad de probabilidad

Proceso iterativo de ajuste a la función de probabilidad óptima.

Prd (porcentaje de cubrimiento ante eventos que requieran un valor positivo de reserva)

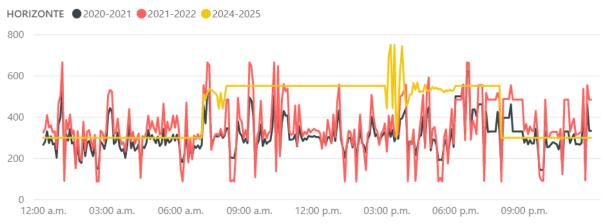
Pro (porcentaje de cubrimiento ante eventos que requieran un valor negativo de reserva)

Establecer márgenes de reserva


Realizar la convolución de las funciones construidas

Se establece un porcentaje de reserva secundaria en función de los porcentajes de cubrimiento.

Estimación de reservas

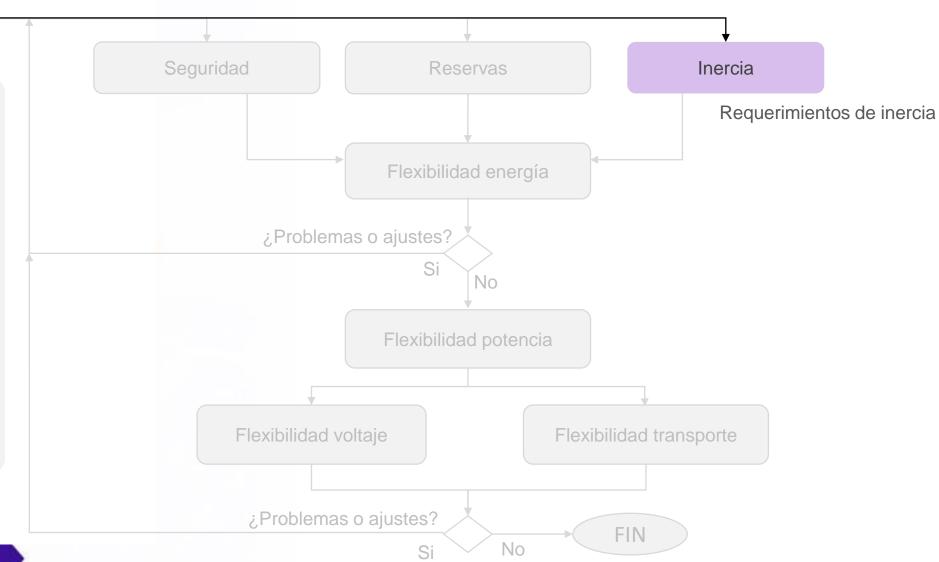

Requerimientos de AGC

Variaciones intra-horarias

- El resultado del estudio 2024-2025 refleja la alta componente de generación fotovoltaica que se tendrá para este horizonte de tiempo.
- Al acercarse la fecha de operación se contará con mejor información asociada a la desviación de generación de cada tecnología, lo que permitirá actualizar los resultados del estudio.
- Al analizar el resultado del cálculo de reservas con una estampa de 5 minutos se evidencia una alta variabilidad intra-horaria.

Metodología de XM para la evaluación de flexibilidad

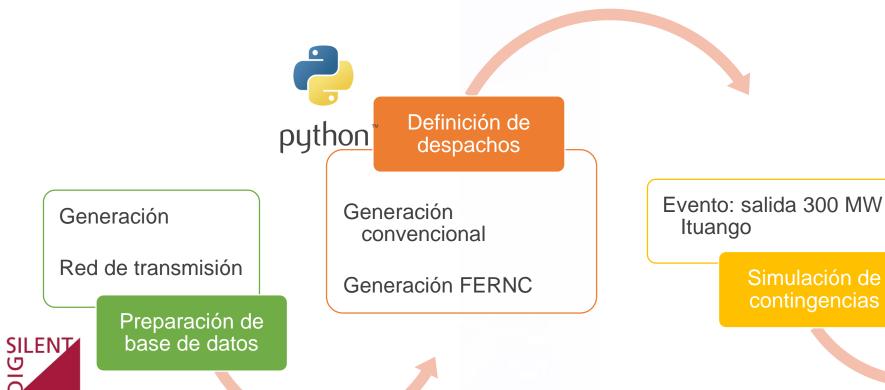
Topología de la red


Matriz de generación

Escenarios de producción eólica y solar

Hidrología

Demanda


Suministro de combustibles

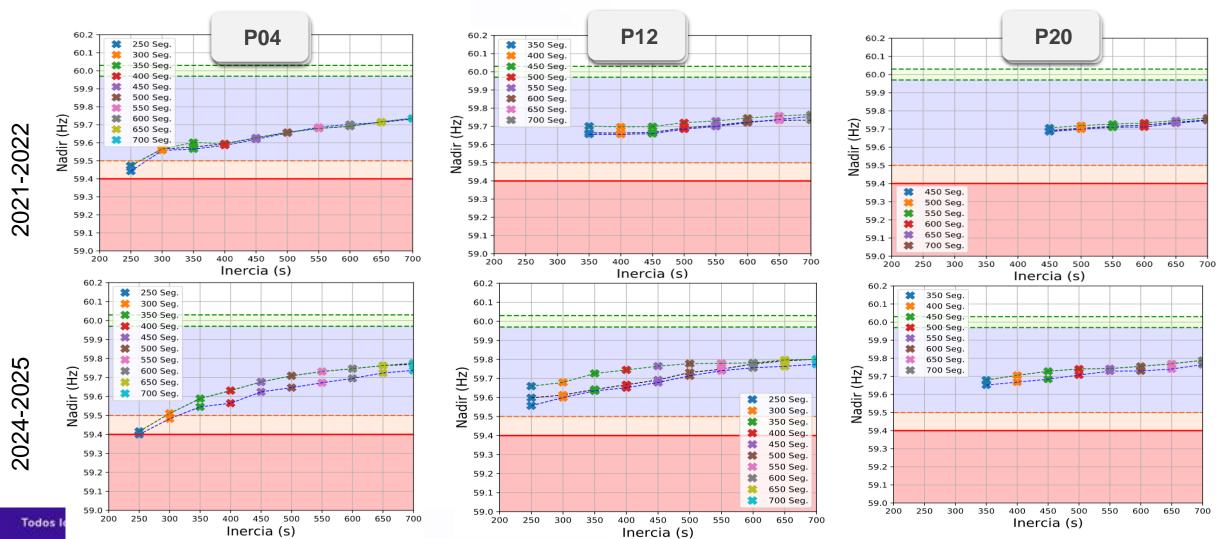
Requerimientos de Inercia

Xmando energias

Metodología

Estudiar la evolución de frecuencia

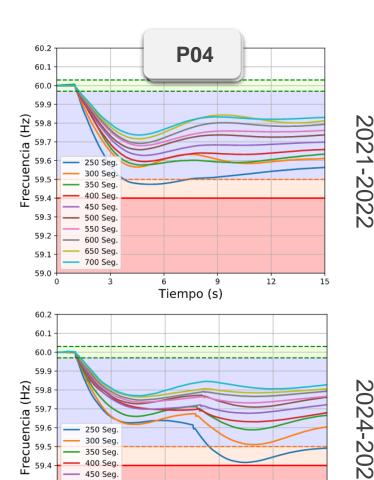
Requerimientos de inercia



Requerimientos de Inercia

Resultados frecuencias mínimas: Evento 300 MW

* En todos los casos se mantiene habilitada la RPF de generación sincrónica.



Requerimientos de Inercia

Resultados

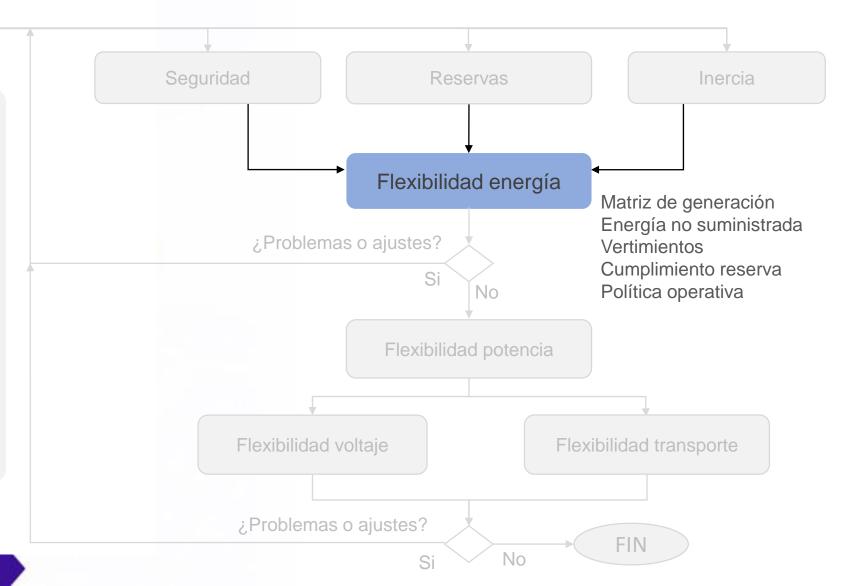
- Con los requisitos definidos a través de la Resolución CREG 060 del 2019 para las FERNC asociadas a RRF y RPF, se presenta un efecto positivo en el control de la frecuencia del SIN.
- Para el horizonte 2021 2022 desde el punto de vista del control de frecuencia, se pueden incorporar al SIN 1.5 GW de generación FERNC, dado que la inercia y RPF asociada a la generación requerida para suplir la demanda es suficiente para evitar la actuación del EDAC ante eventos de frecuencia.
- Se observa que para el horizonte 2024 2025 desde el punto de vista del control de frecuencia, se pueden incorporar al SIN 4.4 GW de generación FERNC, siempre que se garantice en demanda mínima un valor de inercia base de 300 segundos, dado que la inercia y RPF asociada a la generación requerida para suplir la demanda es suficiente para evitar la actuación del EDAC ante eventos de frecuencia.

Tiempo (s)

12

Metodología de XM para la evaluación de flexibilidad

Topología de la red


Matriz de generación

Escenarios de producción eólica y solar

Hidrología

Demanda

Suministro de combustibles

Flexibilidad por energía

XM Sumando energias

Metodología

Modelo de planeación energética

Función objetivo

Minimización del costo de operación

Restricciones

- Balance generación-demanda
- Control del nivel del embalse
- Límites de generación
- Disponibilidad de combustibles
- Límites en los flujos de transmisión
- Generación de seguridad

Variables de decisión

Producción de las unidades de generación

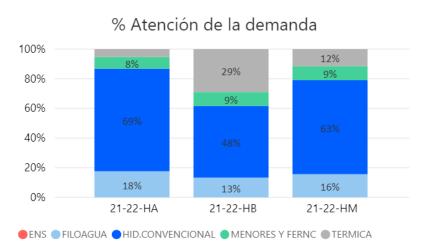
Variables de estado

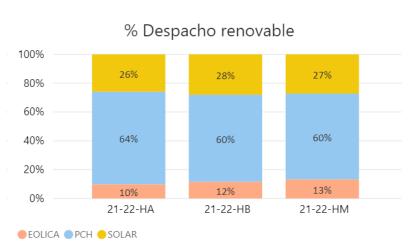
- Costos de operación
- Nivel de los embalses
- Flujos por las líneas
- Consumo de combustible

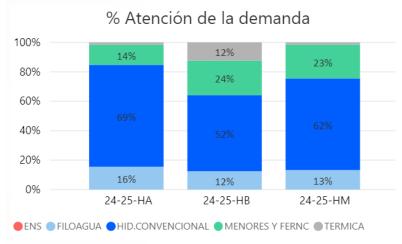
Horizonte de optimización: 1 año

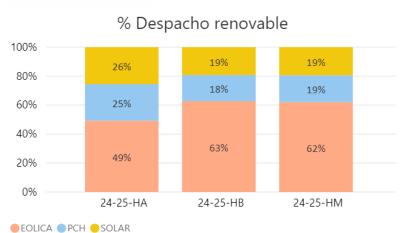
Condición terminal: año adicional con hidrología media

Paso de optimización: semanal

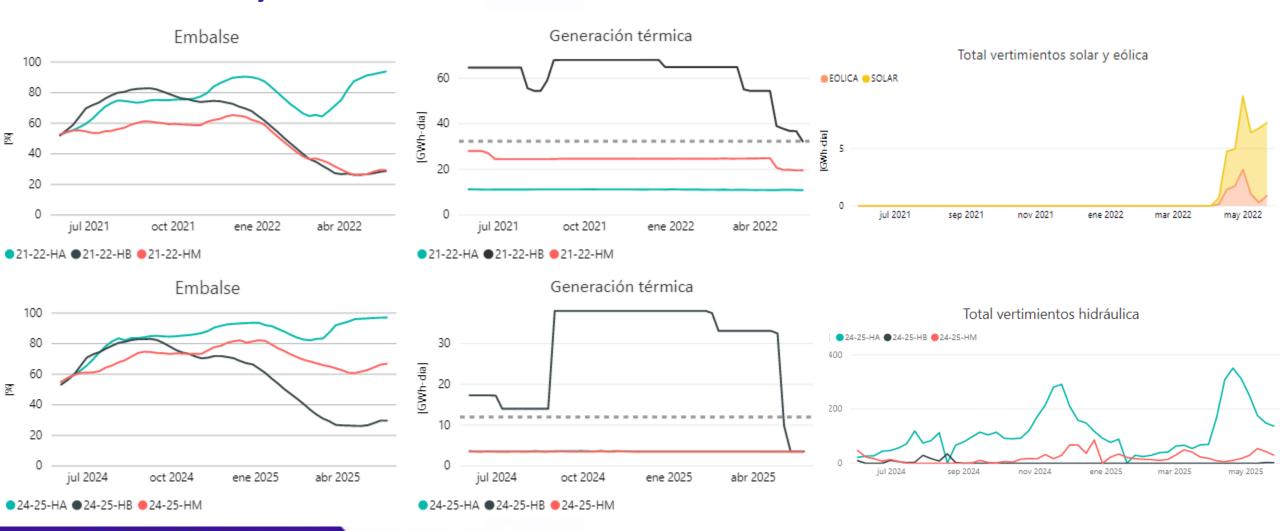

HM: año histórico con Hidrología Media (2013-2014)


HA: año histórico con Hidrología Alta (2010-2011) HB: año histórico con Hidrología Baja (2015-2016)


Flexibilidad por energía



Suficiencia energética


Vertimientos FERNC [GWh-día]			
CASE	EOLICA	SOLAR	
21-22-HA	9	32	
21-22-HB	0	0	
21-22-HM	0	0	
Total	9	32	

Total	170	80		
24-25-HM	0	0		
24-25-HB	0	0		
24-25-HA	170	80		
CASE	EOLICA	SOLAR		
Vertimientos FERNC [GWh-día]				

Flexibilidad por energía

Xmando anorgias

Generación y vertimientos

Flexibilidad por energía

Principales resultados

- No se presenta demanda no atendida en ningún caso de estudio.
- Se presentan vertimientos de FERNC en el caso de Hidrología Alta. Ambos horizontes presentaron vertimientos en el mes de mayo, cuando los aportes alcanzan los 600 GWh-día aprox. En el 2024-2025 se presentaron vertimientos adicionales en los meses noviembre – diciembre cuando también se presenta un aumento considerable de aportes.
- La generación térmica es necesaria para abastecer la demanda cuando los aportes son deficitarios:
 - 2021-2022: pasa del 12% de atención de la demanda en hidrología media al 29% en hidrología baja.
 - 2024-2025: pasa del 1.5% de atención de la demanda en hidrología media al 12% en hidrología baja.
- El embalse, en todos los casos de hidrología baja, alcanza la CAR en el verano. En el horizonte 2021-2021, el caso de hidrología media también llega a valores mínimos.
- En el horizonte 2024-2025, cuando se tiene mayor eólica instalada, se observa una reducción en la producción de esta tecnología, para el caso de hidrología alta.

VERTIMIENTOS FERNC [GWh-día]

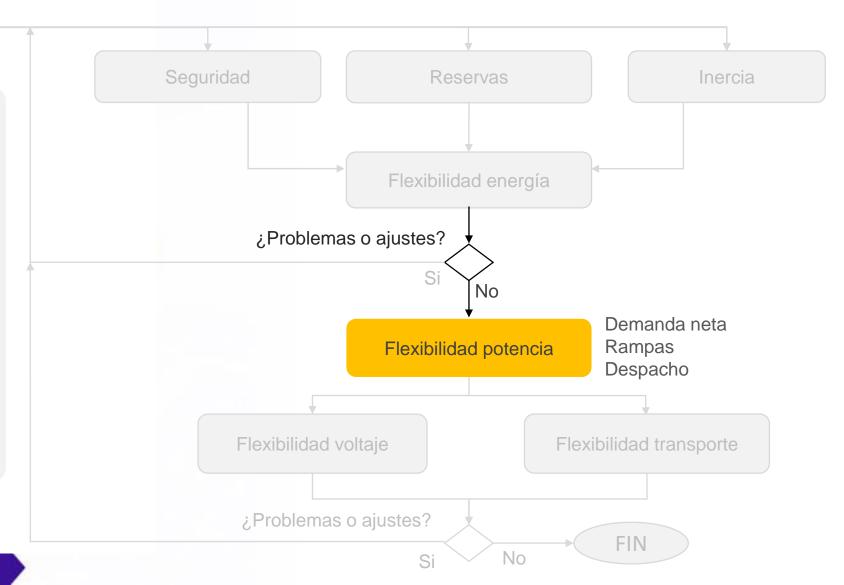
CASE	EOLICA	SOLAR	Total
21-22-HA	9	32	40
21-22-HB	0	0	0
21-22-HM	0	0	0
Total	9	32	40

VERTIMIENTOS FERNC [GWh-día]

CASE	EOLICA	SOLAR	Total
24-25-HA	170	80	250
24-25-HB	0	0	0
24-25-HM	0	0	0
Total	170	80	250

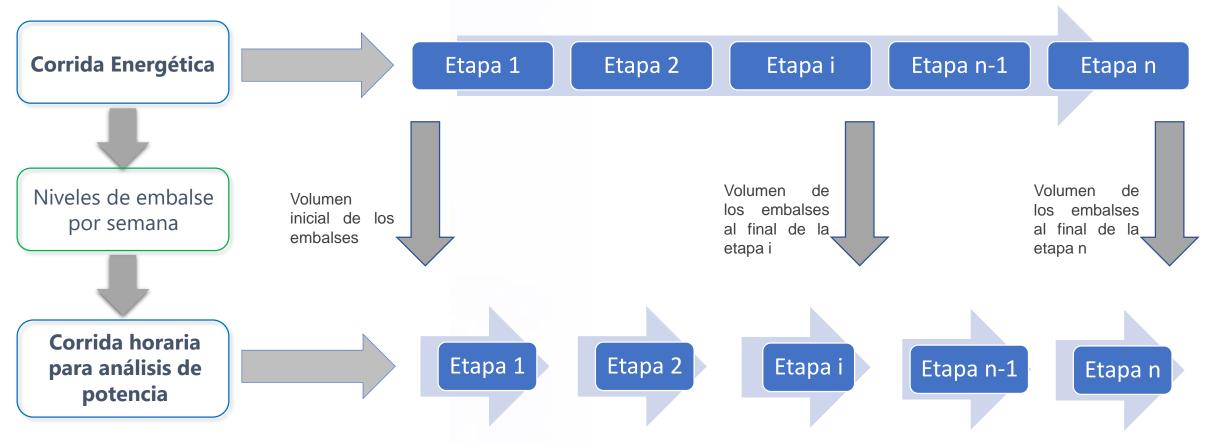
Metodología de XM para la evaluación de flexibilidad

Topología de la red


Matriz de generación

Escenarios de producción eólica y solar

Hidrología


Demanda

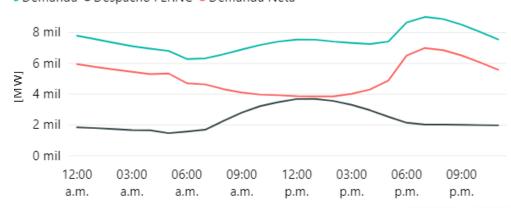
Suministro de combustibles

XM Surrando energias

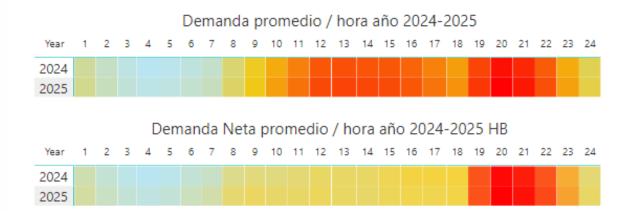
Metodología

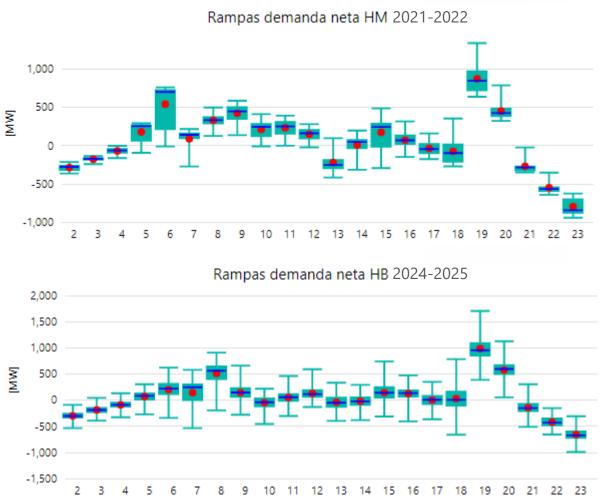
- Despacho horario con horizonte de un año
- Características técnicas de las plantas térmicas e hidráulicas
- Minimización de costos

- Red de transmisión STN
- Cortes y generación de seguridad
- Configuración combustible principal
- Sin mantenimientos ni índices de indisponibilidad



Demanda neta



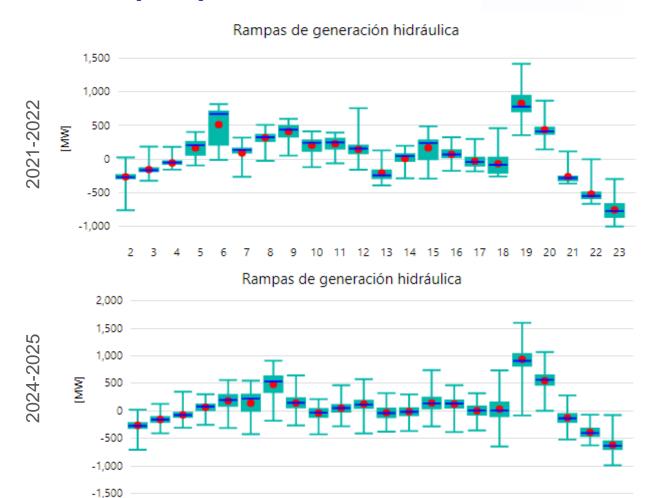


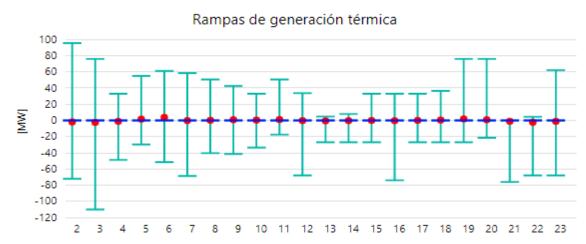
- Día con menor demanda neta 10 am a 1 pm: 16 de abril de 2022 HM, 24 de marzo de 2025 HB.
- Día con menor demanda total 10 am a 1 pm: 1 de enero.
- Día con mayor producción de FERNC: 28 de marzo de 2022, 1 pm HM, 25 de marzo de 2025 a la 1 pm HB.
- Se observa un aplanamiento de la curva neta de demanda en las horas del medio día con respecto a la curva de demanda total.
- La curva del pato y requerimientos de rampas de bajada empiezan a aparecer en el horizonte 2024-2025.

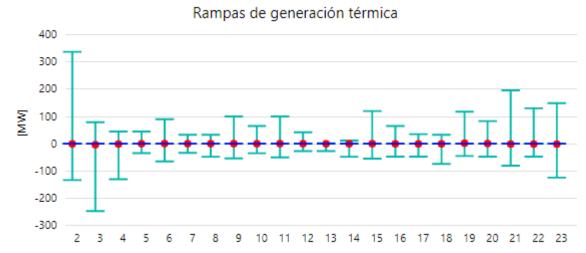
Rampas para atender la demanda neta

2021-2022 (HM)

 La máxima rampa para atender la demanda total se da entre los períodos 18 y 19, con valores máximos de 1085 MW, mientras que la demanda neta presenta, para los mismos períodos, valores máximos de 1341 MW.

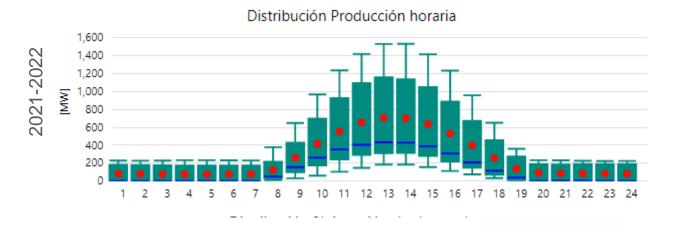

2024-2025 (HB)

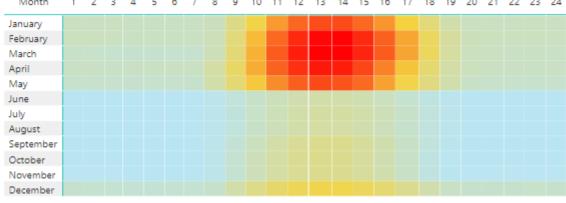

- La máxima rampa para atender la demanda total se da entre los períodos 18 y 19, con valores máximos de 1378 MW, mientras que la demanda neta presenta, para los mismos períodos, valores máximos de 1705 MW.
- La mínima rampa para atender la demanda total en la hora 6 es de 137 MW. La mínima rampa en esa hora para la demanda neta es de -337 MW.

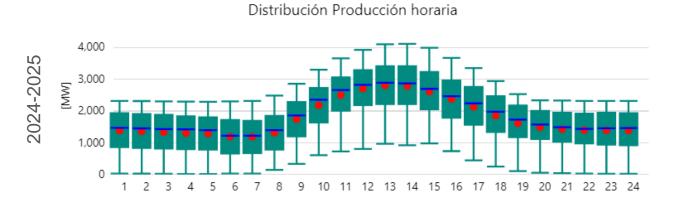

Las rampas para atender la demanda neta son provistas por la generación hidráulica. La generación térmica se despacha en la mayoría del tiempo en valores constantes. Sin embargo, se observa un aumento de rampas provistas por plantas térmicas en el escenario de hidrología baja.

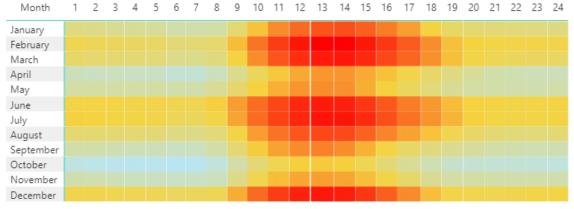
XM Summing amorgina

Rampas para atender la demanda neta








Generación FERNC - HM

Generación

2021-2022

- En el escenario de hidrología media, el mayor despacho de FERNC fue de 1531 MW y el promedio fue de 710 MW.
- El máximo porcentaje de demanda atendido por FERNC fue de 17.7% para el caso de hidrología media, en la hora 13. El menor porcentaje, a esa hora para ese caso, fue de 1.85%.
- El caso de hidrología alta es el que mas arranques y paradas presenta.
- El caso de hidrología baja presenta menos arranques y paradas, con mas generación térmica en línea de forma constante.

2024-2025

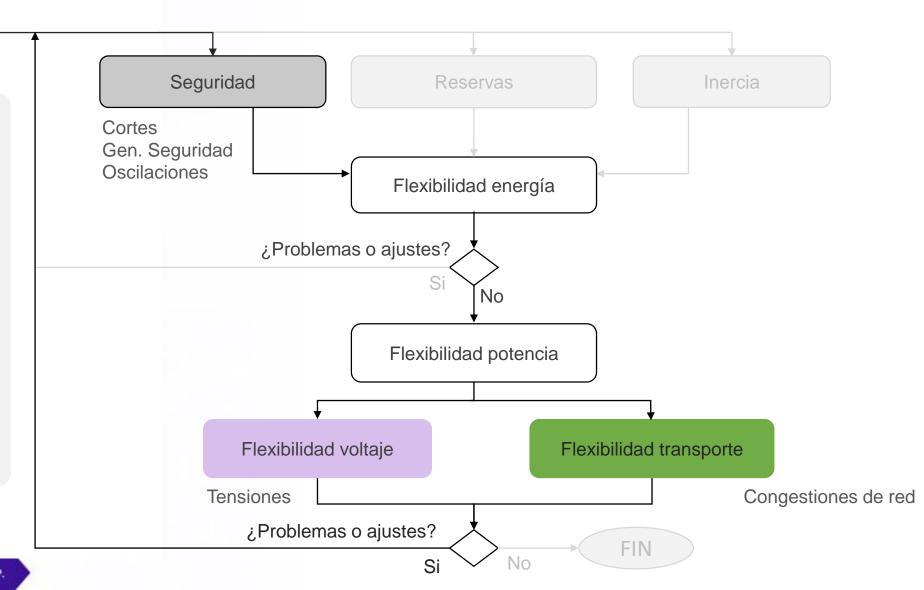
- En el escenario de hidrología baja, el mayor despacho de FERNC fue de 4108 MW y el promedio fue de 2800 MW.
- El máximo porcentaje de demanda atendido por FERNC fue de 48% para el caso de hidrología baja en la hora 13. El menor porcentaje, a esa hora para ese caso, fue de 8%.
- El caso de hidrología baja es el que mas arranques y paradas presenta y mas horas en línea de las unidades.
- Los casos de hidrología alta y media tienen un comportamiento de térmica similar.

RESUMEN COMMIT					
CASE	COMMIT	ARRANQUE	PARADA		
21-22-HA	34052	15	15		
21-22-HB	177845	17	30		
21-22-HM	109273	56	63		

RESUMEN COMMIT					
CASE	COMMIT	ARRANQUE	PARADA		
24-25-HA	35621	39	39		
24-25-HB	121863	73	80		
24-25-HM	39419	29	28		

Metodología de XM para la evaluación de flexibilidad

Topología de la red


Matriz de generación

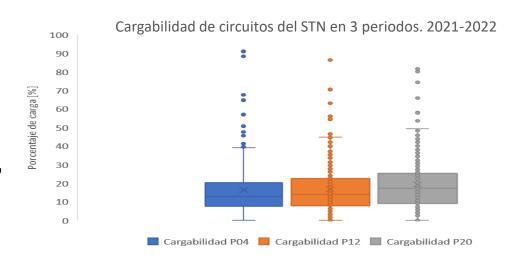
Escenarios de producción eólica y solar

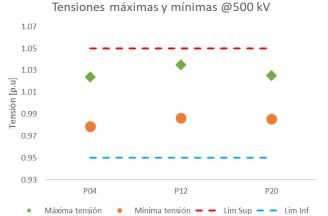
Hidrología

Demanda

Suministro de combustibles

Revisión: Flexibilidad de voltaje y transporte


Conclusiones


Los escenarios de generación han sido probados con los métodos de análisis eléctrico utilizados en el CND, donde, basados en flujos de potencia y análisis de contingencia se valida la seguridad eléctrica de estos en el Sistema de Transmisión Nacional (STN).

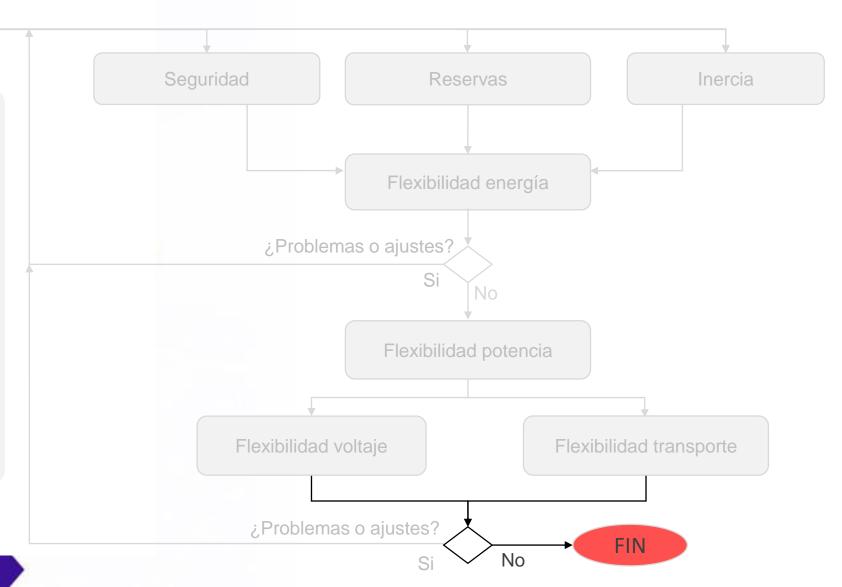
Los eventos de generación expuestos en el presente estudio cumplen con el criterio N-1 y con las recomendaciones de niveles de tensión, mínimo número de unidades y límites máximos de importación en las áreas para los escenarios del 2022 y 2024.

No se encontró ninguna restricción eléctrica para las sobrecargas de los elementos del sistema atribuible al perfil de generación.

Existen restricciones detectadas en los escenarios del 2024, pero que son propias de la transmisión. Se deben a aquellas condiciones que ante una N-1 importante quedan en una topología radial que presenta agotamiento en su capacidad de transporte debido al incremento de carga proyectado por la UPME para un escenario de alta demanda. Dichas condiciones ya han sido previamente detectadas y reportadas en los informes de planeamiento operativo eléctrico de largo plazo (IPOELP) presentados en el 2020.

Metodología de XM para la evaluación de flexibilidad

Topología de la red


Matriz de generación

Escenarios de producción eólica y solar

Hidrología

Demanda

Suministro de combustibles

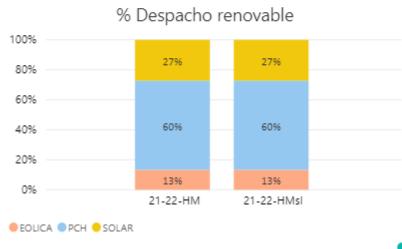
Sensibilidades

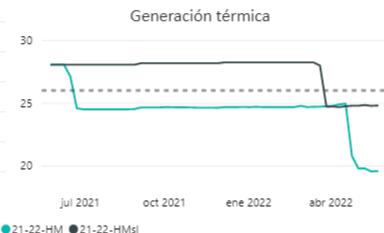
Entrada en operación de Ituango

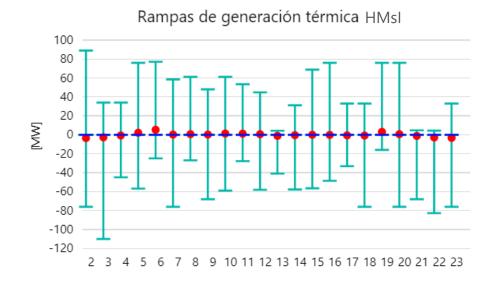
- 1. Atraso del proyecto para el horizonte 2021-2022 con hidrología media.
 - HM: año histórico con Hidrología Media (2013-2014) CEN de Ituango igual a 600 MW.
 - HMsI: año histórico con Hidrología Media (2013-2014) sin considerar la entrada del proyecto Ituango.
- 2. Entrada de todo el proyecto (2400 MW) para el horizonte 2024-2025 con hidrología alta.
 - HA: año histórico con Hidrología Alta (2015-2016) CEN de Ituango igual a 1200 MW.
 - HAcl: año histórico con Hidrología Alta (2015-2016) CEN de Ituango igual a 2400 MW según la siguientes fechas:

	Proyecto	Categoría	FPO (Fecha puesta en operación)	CEN	Área operativa	Punto de conexión	Sistema de transporte
	Ituango U1	Hidráulico	10/03/2022	300	Antioquia	Antioquia 500 kV	STN
ETAPA 1	Ituango U2	Hidráulico	22/05/2022	300	Antioquía	Antioquia 500 kV	STN
EIAPAI	Ituango U3	Hidráulico	15/08/2022	300	Antioquia	Antioquia 500 kV	STN
	Ituango U4	Hidráulico	13/11/2022	300	Antioquia	Antioquia 500 kV	STN
	Ituango U5	Hidráulico	10/01/2024	300	Antioquia	Antioquia 500 kV	STN
EIAPA 2	Ituango U6	Hidráulico	10/03/2024	300	Antioquia	Antioquia 500 kV	STN
	Ituango U7	Hidráulico	8/06/2024	300	Antioquia	Antioquia 500 kV	STN
	Ituango U8	Hidráulico	6/09/2024	300	Antioquia	Antioquia 500 kV	STN

Atraso Ituango 2021-2022




Flexibilidad por energía


- El efecto de un atraso de Ituango se ve reflejado en el **incremento de generación térmica**, con valores cercanos a los 6GWh-día de más, en el segundo semestre de 2021.
- La generación de FERNC no tiene cambios significativos.

Atraso Ituango 2021-2022

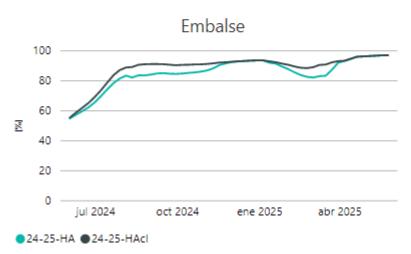
Flexibilidad por potencia

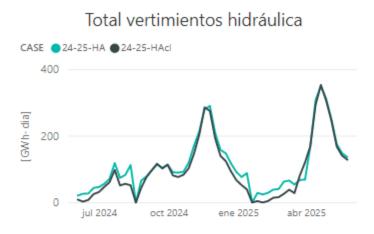
RESUMEN COMMIT

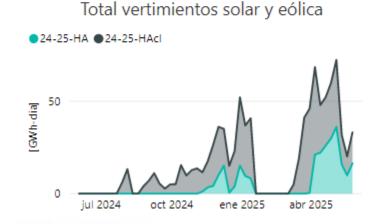
CASE COMMIT ARRANQUE PARADA

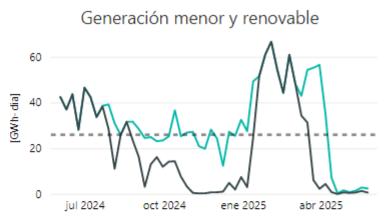
21-22-HM 109273 56 63

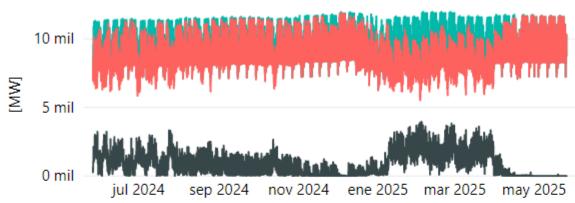
21-22-HMsi 124799 43 47


- El despacho de máximos y mínimos de FERNC no sufre cambios entre los dos casos y por ende, la demanda neta tampoco tiene cambios significativos.
- Las rampas para atender la demanda neta son provistas por la generación hidráulica.
- Se observan algunos cambios en las rampas suministradas por la generación térmica, especialmente en la amanecida y al final de cada día.
- El caso sin Ituango muestra un mayor despacho de térmica y menos arranques y paradas.

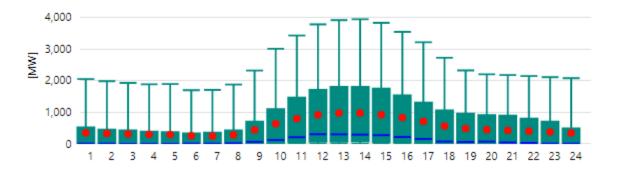

Ituango 2400 MW 2024-2025




Flexibilidad por energía

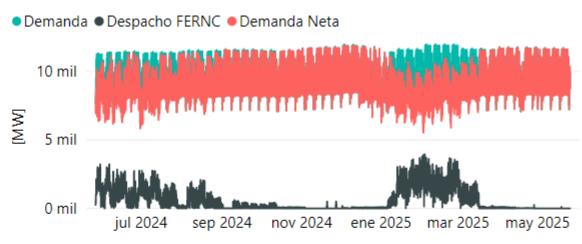

- El efecto de la entrada de todo el proyecto Ituango, según las fechas informadas, es el aumento de generación hidráulica (de 69% a 75%) y, por ende, la reducción de generación FERNC (de 14% a 9%).
- Mayor generación de Ituango reduce los vertimientos de agua pero aumenta los vertimientos de viento y sol.
- El exceso de generación renovable origina despachos de FERNC iguales a cero en algunas horas

Ituango 2400 MW 2024-2025


Flexibilidad por potencia

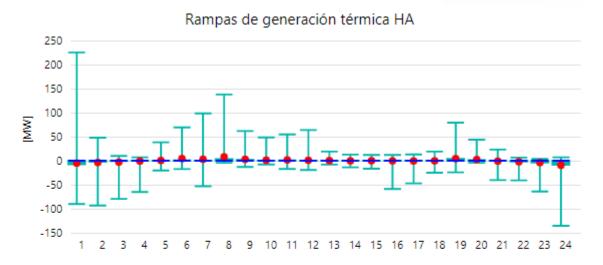
Demanda y FERNC para HA

Demanda ● Despacho FERNC ● Demanda Neta

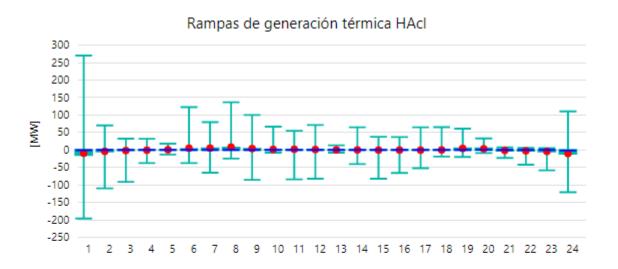


Distribución Producción horaria FERNC

X Months Sumando energias



- La entrada de todo el proyecto Ituango tiene impacto sobre el despacho de FERNC y por ende sobre la demanda neta.
- Se observa un cambio en el patrón de despacho de FERNC y la cantidad de días de demanda neta con curva de pato.
- Se observan cambios en el promedio del despacho de FERNC (1590 MW con 1200 de Ituango y 980 MW con 2400 MW de Ituango)


Ituango 2400 MW 2024-2025

Flexibilidad por potencia

- Las rampas para atender la demanda neta son provistas en su mayoría por la generación hidráulica.
- Se observan algunos cambios en las rampas suministradas por la generación térmica, especialmente en las horas de la tarde.
- El caso con 2400 MW Ituango muestra un mayor número de horas de térmica en línea, mas arranques y paradas, lo que origina el aumento en las rampas.

RESUMEN COMMIT

CASE	COMMIT	ARRANQUE	PARADA
24-25-HA	35057	32	32
24-25-HAcl	42468	66	66

Conclusiones generales del estudio

Según los escenarios y los horizontes analizados, se puede concluir que el sistema colombiano cuenta con suficiente flexibilidad por su capacidad de:

- ✓ Satisfacer picos de demanda evitando energía no suministrada
- ✓ Mantener el equilibrio de la oferta y la demanda
- ✓ Garantizar disponibilidad de rampas
- ✓ Contar con almacenamiento suficiente para gestionar horas de baja demanda y alta producción de FERNC y viceversa
- ✓ Mitigar posibles eventos manteniendo reservas adecuadas

Con los escenarios simulados y los supuestos adoptados, la demanda proyectada para los años 2021-2022 y 2024-2025 **se puede atender con los criterios de seguridad y confiabilidad** establecidos en la regulación vigente ante la integración de 1660 MW y 4431 MW de FERNC respectivamente.

En las condiciones simuladas de hidrología alta (histórico 2010-2011) se presentan vertimientos de agua, viento y sol debido a los altos aportes hídricos.

En condiciones de red completa, se estima que **las rampas requeridas** por la demanda neta sean provistas en su mayoría por la **generación hidráulica**.

Conclusiones generales del estudio

Para el horizonte 2024 – 2025, **se pueden incorporar 4431 MW** de generación FERNC, siempre que se garantice en demanda mínima un valor de **inercia base de 300 segundos**.

Ante los niveles de FERNC considerados, **no se evidencia la excitación futura de un modo de bajo amortiguamiento** que afecte la estabilidad del sistema.

Un eventual atraso de Ituango implicaría despachar generación térmica adicional para atender la demanda.

La integración de la totalidad del proyecto Ituango, podría desplazar generación proveniente de FERNC.

En la medida que se cuente con mejor información de las series meteorológicas y de las características técnicas de los proyectos, es posible tener mayor certeza en la estimación de la generación futura de las plantas renovables y reservas requeridas.

Se deben **integrar estudios** como este a futuros estudios **de resiliencia** para evaluar la flexibilidad del sistema ante eventos de baja probabilidad y alto impacto así como restricciones futuras (como las reglas ambientales)

Referencias

- [1] HFLEX HYDRO. Flexibility, technologies and scenarios for hydro power. Institute for Systems and Computer Engineering, Technology and Science. 25/11/2020
- [2] Emil Hillberg et.al. Flexibility needs in the future power system. ISGAN. Marzo 2019.
- [3] IRENA. Planificación operacional del sistema eléctrico. Análisis de flexibilidad con IRENA FlexTool. 27 de octubre de 2020
- [4] IRENA. Flexibilidad del sistema eléctrico para la transición energética. Opciones tecnológicas para la integración de renovables. 28 de octubre de 2020
- [5] EPRI. Electric Power System Flexibility. Challenges and opportunities. Febrero 2016
- [6] Nexus-E. The role of flexibility providers in shaping the future energy system. 2016-2020.

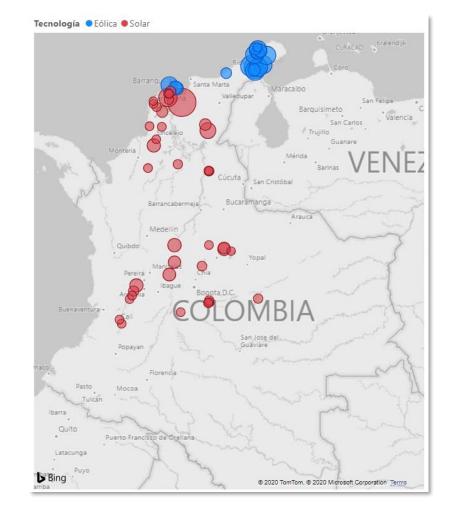
Definición de escenarios

Supuestos

Localización de los proyectos: Coordenadas aproximadas de acuerdo con el punto de conexión y con información de certificaciones disponibles en la web.

Factores de pérdidas: Factor de pérdidas por indisponibilidad 0,94 (6% de la generación).

Escenarios de análisis: Períodos de 1 año determinados por las condiciones hidrológicas.


Series de reanálisis: Información meteorológica obtenida del reanálisis ERA5 para el período de 1978 a 2019, con resolución temporal horaria

Series observadas: Información meteorológica medida en campo para 2 proyectos solares y 3 eólicos, con resolución temporal horaria.

Resultado: Serie de energía horaria para las plantas de generación renovable (solares y eólicas) para tres escenarios diferentes.

Localización proyectos FERNC 2025

Generación de seguridad

Detalle Metodología

- 1. Identificar los circuitos para la intercambio de energía con otras áreas.
- 2. Se realiza análisis de contingencias y se identifica la contingencia critica entre estos elementos.
- > La contingencia critica puede estar asociada a sobrecargas o niveles no permitidos de tensión.
- 3. Se hace un análisis de sensibilidad en la generación al interior del área de estudio para identificar el límite máximo de importación ante la contingencia encontrada en 2.

Unidades mínimas

- 1. Establecer límite de importación
- 2. Analizar el cumplimiento de los valores de tensiones dentro de rangos permitidos en condiciones de red completa y N-1
- 3. De no cumplirse el punto 2 en todos los escenarios se procede requerir un mínimo de unidades de generación en línea para garantizar un nivel de reserva de potencia reactiva en el área.
- i.Cada unidad del área recibe un peso dependiendo de la cuantificación de su aporte al soporte de tensión en el área de estudio
- ii.Con la tabulación de requerimientos de unidades de generación en línea y el peso de cada unidad se procede a despachar las unidades hasta cumplir con el requerimiento

Restricciones eléctricas Asociada a limitaciones que se presentan en la operación del SIN, que tienen su origen en la capacidad de la infraestructura eléctrica como limites térmicos admisibles de equipos de transporte o transformación.

- 1. Análisis de contingencias sencillas (N-1)
- 2. Verificación de los criterios de cargabilidad y sobrecarga establecidos en la regulación.
- 3. Se evalúan restricciones eléctricas y Operativas y se generan recomendaciones eléctricas **RECELE**: cortes, número mínimo de unidades, MW max, MW min de generación, tensiones objetivo, políticas operativas, y reconfiguraciones topológicas.

Insumos: Reserva secundaria

Supuestos

- Desviación de generación:
 - Generación no convencional: distribución normal con media 0 MW y desviación estándar de 6,7% de la potencia total generada en cada periodo.
 - Generación convencional: distribución normal con media 0 MW y desviación estándar de 7% de la potencia total generada en cada periodo.
- **Desviación entre la demanda real y demanda pronosticada**: solo se toman valores en los que la demanda real está por encima de la pronosticada, ya que al tomar los valores negativos se introduce un sesgo.
- Histórico de datos: 1 de enero del 2019 1 de octubre del 2020.
- Día de referencia con generación de renovables considerando el percentil 99: 26 de marzo del 2022 del escenario de hidrología baja y el 27 de marzo del 2025 del escenario de hidrología baja.

	RMSE [% CEN]	MAE [% CEN]	SESGO [% CEN]	Fecha inicial	Fecha Final	PLANTAS CONSIDERADAS
Solar	10.4	5.7	-1.4	nov-19	nov-20	El Paso
Eólica	13.2	8.7	2.7	nov-19	nov-20	Jepirachi
FDA	13.6	10	2.2	ene-17	nov-20	Agregado plantas filo de agua

Insumos: Inercia

Supuestos

- Pronóstico para P04, P12 y P20.
- Los generadores eólicos realizan respuesta rápida de frecuencia y no prestan el servicio de regulación primaria.
- Se utiliza el modelo de FERNC desarrollado por XM, el cual a su vez se basa en el modelo WECC. Se usa el modelo de carga típico de PowerFactory.
- Evento: Salida de 300 MW de generación convencional. Salida de mayor cantidad de generación por evento N-1 (Proyecto Ituango).

Escenario 2021-2022

Periodo	Demanda	Inercia	Hidrología	FERNC /Demanda	FERNO	(GW)
	(GW)	COL (s)	J	(%)	Eólica	Solar
P04	6.905	250 a 700 Seg.*		3.65	251.8	0
P12	9.876		Baja	14.06	249.9	1138.8
P20	10.696			2.37	250.6	3.2

Escenario 2024-2025

Periodo	Demanda	Hidrología / Demanda /		FERNO	(GW)	
	(GW)	COL (s)	s)	(%)	Eólica	Solar
P04	7,26	250 a 700 Seg.*		34,64	2,29	0
P12	10,22		Baja	38,96	2,23	1,75
P20	11,13			20,94	2,33	0

^{*} Es un valor objetivo y, dependiendo de la cantidad de potencia convencional a despachar, puede ser viable

Principales características del modelo de potencia

Parámetro	Descripción
Demanda	Información horaria
Menores y no convencionales	Información horaria
Hidrología	Caudal semanal promedio
Mantenimientos (red y generación)	No se consideran
Proyectos	Se consideran
Restricciones eléctricas operativas	Según planeamiento operativo
AGC	Información horaria
Restricciones operativas plantas térmicas	Mínimo técnico, rampa a subir, rampa a bajar, tiempo mínimo en línea, tiempo mínimo fuera de línea.
Restricciones operativas plantas hidráulicas	Las del planeamiento operativo de MP
Disponibilidad y contratos de combustibles	Según planeamiento operativo
Horizonte	1 año

Validación: Flexibilidad de voltaje y transporte

Ajustes a las recomendaciones

Escenarios 2021-2022

Demanda mínima

Por problemas de tensión en Cuestecitas 220 kV y Cuestecitas II 220 kV, se recomienda redistribuir el despacho en las unidades de Caribe

Demanda media

Sin ajustes

Demanda máxima

Por problemas de tensión en Cuestecitas 220 kV y Cuestecitas II 220 kV, se recomienda redistribuir el despacho en las unidades de Caribe y despachar una unidad adicional

Escenarios 2024-2025

No se requiere ajuste a la recomendación inicial. Se cumplen el mínimo número de unidades y los límites de importación

