

ANEXO 1 Modelo - Unidad CT

Las bases utilizadas son:

Magnitud	Valor
Potencia aparente del generador	208 MVA
Potencia nominal de turbina	158 MW
Tensión de generador	13.8 kV
Corriente de campo	770 A
Tensión de campo	111 V

Tabla 1-1: Magnitudes bases – Unidad CT

ETERM	Tensión de terminales	
ITERM	Corriente de terminales	
EFD	Tensión de campo	
IFD	Corriente de campo	
PELEC	Potencia activa	
QELEC	Potencia reactiva	
FREC	Frecuencia eléctrica	
AVR	Regulador de tensión	
OEL	Limitador de sobre-excitación	
UEL	Limitador de sub-excitación	
V/Hz	/Hz Limitador de sobre-flujo	
PSS	Estabilizador de sistemas de potencia	
GOV	Regulador de velocidad	

Tabla 1-2 - Nomenclatura

MODELO DEL GENERADOR

Curva de vacío del generador Parámetros del generador

A continuación, se presenta el detalle de los parámetros actualizados, que modelan el generador.

TAG	Descripción	Valor	Unidad
MVAnom	Potencia aparente nominal del generador	208	MVA
kVnom	Tensión de terminales nominal del generador	13.8	kV
Xd	Reactancia sincrónica eje directo	1.969	ри
Xq	Reactancia sincrónica eje cuadratura	1.914	ри
X'd	Reactancia transitoria eje directo	0.256	ри
X'q	Reactancia transitoria eje cuadratura	0.43	ри
X''d	Reactancia sub-transitoria eje directo	0.225	ри
$X^{\prime\prime}q$	Reactancia sub-transitoria eje cuadratura	0.225	ри
T'do	Constante de tiempo transitoria de circuito abierto eje directo	5.412	S
T'qo	Constante de tiempo transitoria de circuito abierto eje cuadratura	1.5	S
T''do	Constante de tiempo sub-transitoria de circuito abierto eje directo	0.02	S
T''qo	Constante de tiempo sub-transitoria de circuito abierto eje cuadratura	0.05	S
<i>X</i> 2	Reactancia inversa	0.23	ри
<i>X</i> 0	Reactancia homopolar	0.1	ри
Xl	Reactancia de dispersión	0.22	ри
S1.0	Factor de saturación para 1.0 pu	0.17	-
S1.2	Factor de saturación para 1.2 pu	0.62	-
Н	Constante de inercia	6.0	S

Tabla 2.2 - Parámetros del generador

Las constantes de tiempo fueron referidas a 75ºC según la siguiente expresión:

$$(1 + \frac{T_{ens}}{234.5})$$

$$T'd0_{@75^{\circ}} = T'd0_{@ens} \times \frac{1.3198}{1.3198}$$

Dónde se ha asumido que durante los ensayos en vacío la temperatura era 40 °C.

Nombre	Termoemcali (СТ	
Potencia Apar	ente Nominal	208,	MVA
Tensión Nomi		13,8	kV
Factor de Pote	encia	0,85	
Conexión		YN V	_
Modelo	Estándar	~	Parámetros de entrac Datos de cortocircuito V
Modelo detall Inercia	ado 2.2 (devanad	do de campo y u	un amortiguamiento en el eje d, y dos devanados de amortiguamiento en el eje q
Constante d	le Inercia H (sego	in Sgn)	6, s
Parámetros	del estator		Reactancias Sincrónicas
rstr	0,	p.u.	xd 1,969 p.u.
xl	0,22	p.u.	xq 1,914 p.u.
Tipo de Roto	or		Reactancias mutuas del rotor
C Polos Sa			xrld 0, p.u.
Rotor Lis	60		xrlq 0, p.u.
	de Tiempo Trans	itorio	Reactancias Transitorias
Td0'	5,412	S	xd' 0,256 p.u.
Tq0'	1,5	S	xq' 0,43 p.u.
Constantes	de Tiempo Subtr	ansitorio	Reactancias Subtransitorias
Td0''	0,02	s	xd" 0,225 p.u.
Tq0''	0,05	s	xq" 0,225 p.u.
Datos de Sec	cuencia Cero		Datos de Secuencia Negativa
Reactancia	κ0 0,1	p.u.	Reactancia x2 0,23 p.u.
Resistencia	r0 0,	p.u.	Resistencia r2 0, p.u.
Saturación de	l Flujo Princ <mark>Cua</mark>	drática (SG10/SG	512) V Saturación ejes d y q (magnitud del flujo)
	le Saturación		
SG10	0,17	p.u.	1,80
SG12	0,62	p.u.	[p.u.]
		'•	1,20
			0,80
			0,40
			0,00 P 100 200 300 400 100 100 100 100 100 100 100 100 1
			nsion del terrinal (no saturado) (e en % Tonsión del terrinal (saturado)

Tabla 2-3 - Parámetros del generador

Modelo del AVR

En la Figura 3-3 se muestra el diagrama de bloques del AVR y en la Tabla 3-3 los parámetros del modelo, utilizados para reproducir las respuestas dinámicas obtenidas en los diferentes ensayos realizados.

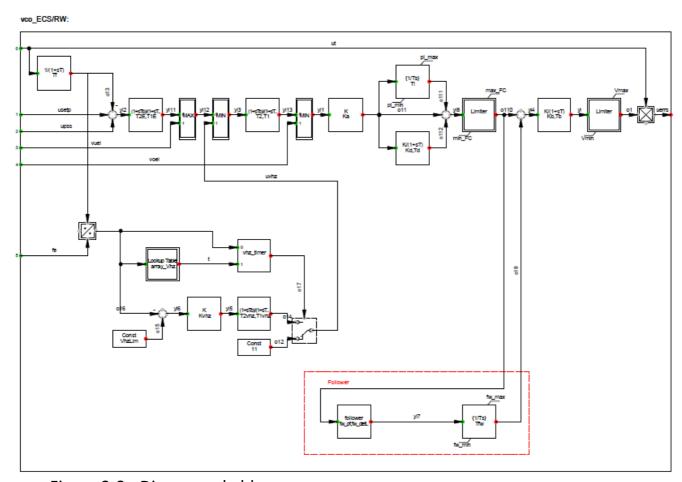


Figura 3-3 - Diagrama de bloques

	Parámetro
▶Tfw Cte de rampa follower [seg]	25,
Ti Cte de tiempo integral PID [seg]	1,6666
Kb Ganancia puente [pu]	1,
Tb Cte de tiempo puente [seg]	0,005
Tf Cte. de tiempo filtro ETERM [seg]	0,005
Ka Ganancia PID [pu]	92,82
Kvhz Ganancia VHz [pu]	1,
fw_of Valor ajuste follower [pu]	1,
fw_delta Umbral error follower [pu]	0,01
fw_hist Histeresis error follower [pu]	0,
fw_del Delay follower [pu]	4,
Kd Ganancia derivativa PID [pu]	0,
Td Cte de tiempo derivativa PID [seg]	1,
T2E Cte de tiempo lag 1 [seg]	1,
T1E Cte de tiempo lead 1 [seg]	1,
T2 Cte de tiempo lag 2 [seg]	0,01
T1 Cte de tiempo lead 2 [seg]	0,
T2vhz Cte de tiempo lag VHz [seg]	1,
T1vhz Cte de tiempo lead VHz [seg]	1,
VhzLim Limite VHz [pu]	1,05
Vmin Techo de excitacion negativo [pu]	-5,15
fw_min Limite inferior follwer [pu]	0,
min_FC Limite firing command [pu]	-10,
pi_min Limite inferior PID [pu]	-8,
Vmax Techo de excitacion positivo [pu]	5,53
fw_max Limite superior follwer [pu]	10,
max_FC Limite firing command [pu]	10,
pi_max Limite superior PID [pu]	8,

Tabla 3-3 - Parámetros del AVR

	Vhz_x	Vhz_y
Size	5,	5,
1	1,05	30,
2	1,05001	30,
3	1,07035	12,
4	1,25	6,
5	1,25	6,

Tabla 3-4 - Parámetros del V/Hz

Modelo del OEL

El modelo del limitador de sobre-excitación (OEL) ha sido desarrollado siguiendo la información recopilada en planta, este se muestra en la Figura 3-4.

OEL_ECS/RW:



Figura 3-4 - Diagrama de bloques del limitador OEL

La parametrización del modelo se presenta en la Tabla 3-5.

	Parameter
IFDinst Limite IFD instantaneo [pu]	1,3
IFD_BaseAVR Base de la corriente de campo utilizada por	2570,
IFD_Base Base de la corriente de campo utilizada en el m	770,
Koel Ganancia OEL [pu]	0,15
Koell Ganancia OEL Inst [pu]	0,2
T2oel Cte. tiempo lag OEL [seg]	0,1
Tloel Cte. tiempo lead OEL [seg]	1,2
T1oell Cte. tiempo lead OEL Inst [seg]	0,
T2oell Cte. tiempo lag OEL Inst [seg]	0,2
IFDLim Limite IFD tiempo inverso [pu]	0,8433
C Cte. temporizacion OEL [pu]	0,619
A Cte. temporizacion OEL [pu]	12,
OEL_TEST Cte utilizada para realizar un test al OEL engañ	0,

Tabla 3-5 - Parámetros del OEL

Modelo del UEL

En la Figura 3-5 se presenta el diagrama de bloques del modelo del UEL desarrollado siguiendo la información recopilada en planta.

UEL_ECS/RW:

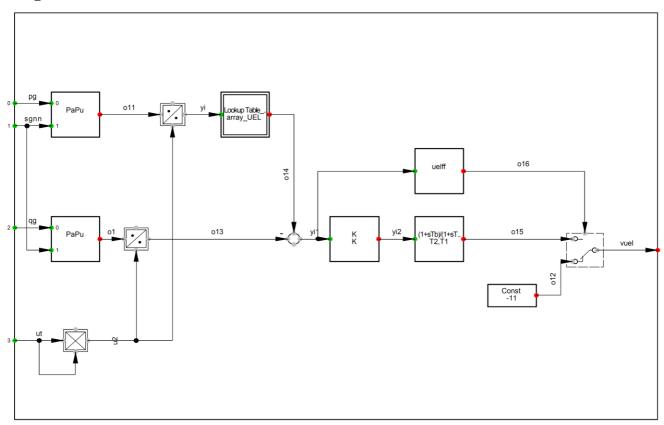


Figura 3-5 - Diagrama de bloques del limitador UEL

La parametrización del modelo se presenta en la Tabla 3.6

	Parámetro
T2 Cte. de tiempo Lag UEL [pu]	0,2
T1 Cte. de tiempo Lead UEL [pu]	0,
K Ganancia UEL [pu]	0,08

Tabla 3.6 - Parámetros del UEL

	UEL_x	UEL_y
Tamaño	6,	6,
1	0,	-0,2644
2	0,38	-0,2644
3	0,543	-0,2259
4	0,759	-0,1682
5	1,	-0,113
6	1,5	0,125

Tabla 3.7 - Tabla UEL

Curva de capacidad efectiva

A continuación, se presenta la curva de capacidad efectiva del generador incluyendo las regiones de actuación de los limitadores según se relevara en terreno.

Las curvas que se incluyen a continuación son:

- Curva de capacidad ensayada 100% Unom en la Figura 3-24.
- Curva de capacidad ensayada 95% Unom en la Figura 3-25.
- Curva de capacidad ensayada 105% Unom en la Figura 3-26.

En las tres curvas se representan:

- Potencia aparente de la unidad (trazo azul)
- OEL (trazo púrpura continuo)
- UEL (trazo naranja continuo)
- Protección de pérdida de campo 40G1 (trazo magenta continuo)
- Protección de pérdida de campo 40G2 (trazo magenta discontinuo)
- Potencia máxima (trazo rojo continuo)
- Mínimo técnico (trazo cyan continuo)
- 2 Factor de potencia nominal 0.85 (trazo gris discontinuo)

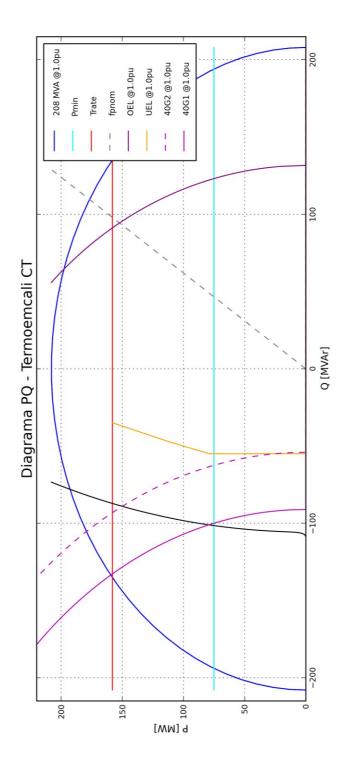


Figura 3-24 - Curva de capacidad - Tensión 1 pu

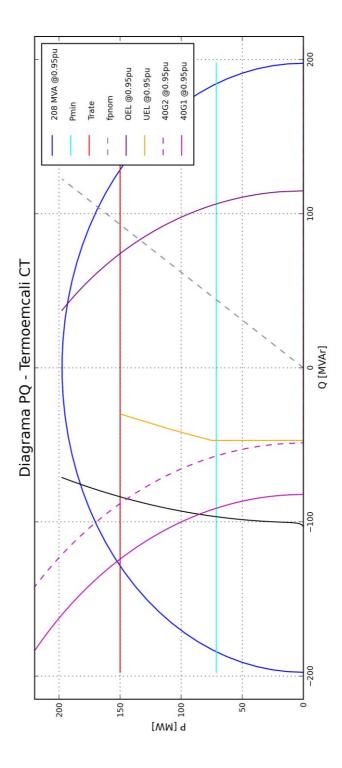


Figura 3-25 - Curva de capacidad - Tensión 0.95 pu

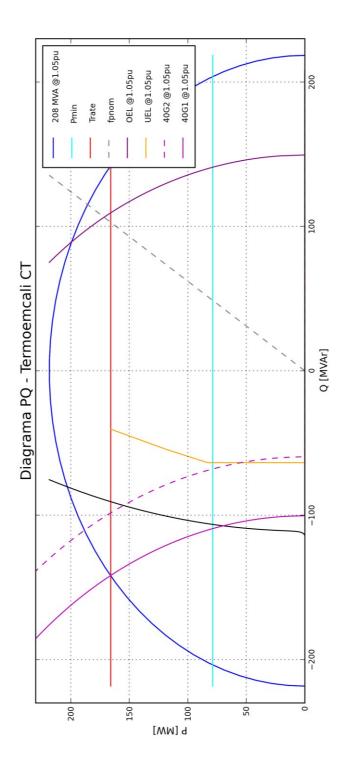


Figura 3-26 - Curva de capacidad - Tensión 1.05 pu

ESTABILIZADOR DE SISTEMAS DE POTENCIA

Descripción

En la Figura 4-1 se presenta el diagrama de bloques del modelo del estabilizador de sistemas de potencia desarrollado y parametrizado a partir la información recopilada en planta.

El estabilizador de sistema de potencia implementado es del tipo integral de potencia acelerante, correspondiendo a estándar PSS2A.

Los parámetros utilizados durante las simulaciones y que representan de forma correcta el comportamiento se presentan en la Tabla 4-1.

pss_ECS/RW: Estabilizador de Sistema de Potencia

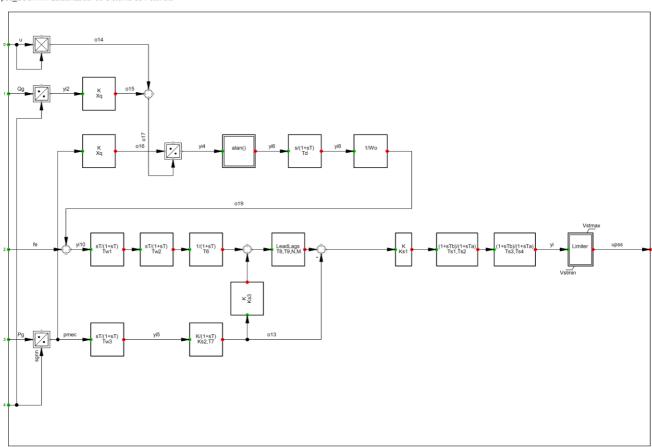


Figura 4-1 - Diagrama de bloques del PSS1A desarrollado

La parametrización del modelo se presenta en la Tabla 4-1.

	Parámetro
Tw1 1st Washout 1th Time Constant [s]	10,
Tw2 1st Washout 2th Time Constant [s]	10,
Td Cte de tiempo derivador slip [s]	0,01
T6 1st Signal Transducer Time Constant [s]	0,
Tw3 2nd Washout 1th Time Constant [s]	10,
Ks2 2nd Signal Transducer Factor [pu]	2,16
T7 2nd Signal Transducer Time Constant [s]	3,
Ks3 Washouts Coupling Factor [pu]	1,
Ks1 PSS Gain [pu]	2,
Xq Reactancia para slip [pu]	0,25
Ts1 1st Lead-Lag Derivative Time Constant [s]	0,12
Ts2 1st Lead-Lag Delay Time Constant [s]	0,02
Ts3 2nd Lead-Lag Derivative Time Constant [s]	0,12
Ts4 2nd Lead-Lag Delay Time Constant [s]	0,02
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,5
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
N Ramp Tracking Filter [-]	1,
M Ramp Tracking Filter [-]	5,
Vstmin Controller Minimum Output [pu]	-0,05
Vstmax Controller Maximum Output [pu]	0,05

Tabla 4-1 - Parámetros del modelo PSS2A

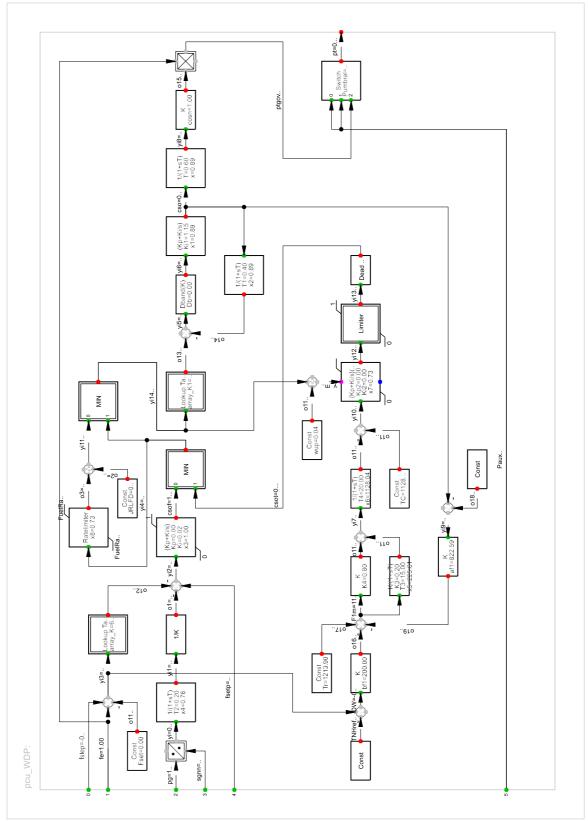


Figura 5-1 - Diagrama de bloques del regulador de velocidad

Parámetros del regulador de velocidad

	Parameter
T2 Cte. de medicion P activa [seg]	0.2
T1 Cte. de tiempo Backlash [seg]	0.4
K3 Ganancia proporcional PT1 FSRT [pu]	0.2
T3 Cte. de tiempo PT1 FSRT [seg]	15.
T4 Cte. de tiempo termocupla FSRT [seg]	20.
Pumbral Umbral de Potencia [pu]	1.
T Cte. de tiempo Pmech [seg]	0.6
Kp Ganancia proporcional PI [pu]	0.
Ki Ganancia integral PI [pu]	0.021
Tr Rate de Temperatura [°F]	1213.9
TC Setpoint de Temperatura [°F]	1128.
wup [pu]	0.04
JRLFD Jump Rate Limit - Fuel Demand [pu]	0.017
Fset [pu]	0.
Db Banda Muerta Backlash [pu]	0.
Ki1 Ganancia integral Pl Backlash [pu]	1.152
cosn Factor de potencia nominal [pu/pu]	1.
af1 Ganancia influencia del flujo de combustible [pu]	822.59
bf1 Ganancia influencia de la velocidad [pu]	200.
K4 Ganancia proporcional PT1 FSRT [pu]	0.8
Kp2 Ganancia proporcional Pl Temperatura [pu]	0.0006
Ki2 Ganancia integral Pl Temperatura [pu]	0.000008
FuelRateLimDown Fuel Rate Limit - down [pu]	-0.00035
FuelRateLimUp Fuel Rate Limit - up [pu]	0.00035

	K_x	K_y	K1_x	K1_y
Size	6.	6.	5.	5.
1	0.9583	-0.0837	0.	0.
2	0.994	-0.0837	0.4455	0.2395
3	0.9995	0.	0.6552	0.7656
4	1.0005	0.	0.742	0.914
5	1.006	0.0837	1.	1.
6	1.04166	0.0837	0.	0.

Figura 5-2 - Parámetros del GOV

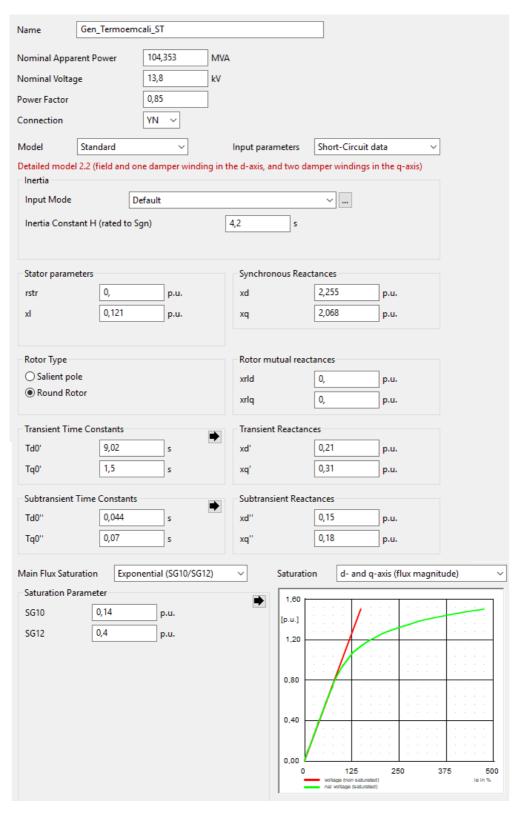
ANEXO 1 Modelo - Unidad ST

Las bases utilizadas son:

Magnitud	Valor
Potencia aparente del generador	104.353 MVA
Tensión de generador	13.8 kV
Corriente de campo de excitatriz	1.07 A
Tensión de campo de excitatriz	7.60 V

Tabla 1-1: Magnitudes bases – Unidad ST

ETERM	Tensión de terminales
ITERM	Corriente de terminales
VFD	Tensión de campo de la excitatriz
IEX	Corriente de campo de la excitatriz
PELEC	Potencia activa
QELEC	Potencia reactiva
FREC	Frecuencia
AVR	Regulador de tensión
V/Hz	Limitador de sobreflujo
OEL	Limitador de sobreexcitación
UEL	Limitador de subexcitación
SCL	Limitador de corriente estatórica
FSNL	Full Speed No Load (Ensayos en vacío)


Tabla 1-2 - Nomenclatura

MODELO DEL GENERADOR

Parámetros del generador

La Tabla 2-1 detalla los parámetros obtenidos para el modelo de generador.

Tabla 2-1 - Parámetros del generador - Unidad ST

Las constantes de tiempo fueron referidas a 75ºC según la siguiente expresión:

$$(1 + {^T_{ens}}/_{234.5})$$

$$T'd0_{@75^{\circ}} C = T'd0_{@ens} \times$$

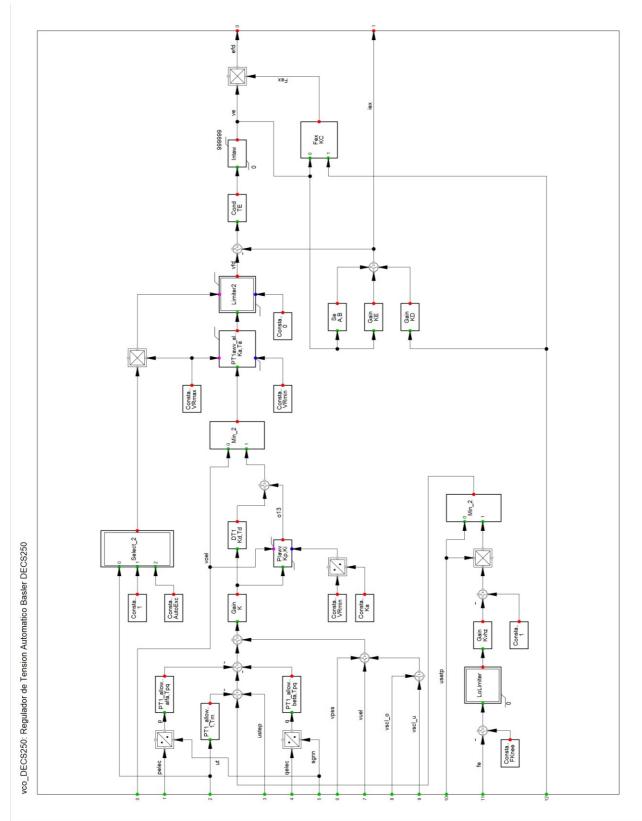


Figura 3.1 - Diagrama de bloques de AVR

	Parameter
Tm Constante de Tiempo de Medicion de Voltaje [s]	0,
alfa Droop de PELEC [pu]	0,
Tpq Constante de Tiempo de Medicion de Potencia [s]	0,01
beta Droop de QELEC [pu]	0,
Kd Ganancia Derivativa PID [pu]	214,
Td Ctte Derivativa PID [s]	0,05
VRmax Limite superior EFD [pu]	27,
FKnee Umbral de Limitacion del VHZ [pu]	0,95
VRmin Limite inferior EFD [pu]	-0,32
Ka Ganancia del Puente [pu]	26,974
AutoExc 1:Sistema Autoexcitado/2:PMG []	2,
K Ganancia de Lazo [pu]	0,1875
Kvhz Ganancia del VHZ [pu]	1,
TE Ctte tiempo excitatriz [s]	2,5
KE Ctte excitatriz [pu]	1,
KD Constante reaccion armadura [pu]	0,5
Kp Ganancia Proporcional PID [pu]	14,25
Ki Ganancia Integral PID [1/s]	5,1
Ta Constante de Tiempo del Puente [s]	0,004
A Factor proporcional [pu]	0,00475
B Factor exponencial [pu]	1,
KC Constante regulacion puente rectificador [pu]	0,2

Tabla 3-1 - Parámetros del AVR - Unidad ST

Validación del modelo del AVR en vacío Validación del modelo del OEL

El regulador de tensión cuenta con un limitador de máxima corriente de excitación temporizado cuyo modelo se detalla en la Figura 3.12. dicho limitador cuenta con un escalón de actuación instantáneo (HiL) y uno temporizado. La referencia del escalón temporizado se calcula según una curva de tiempo inverso, vale decir que el valor al que limita desciende a medida que aumenta el tiempo que permanece actuado hasta llegar a un valor final de "LoL".

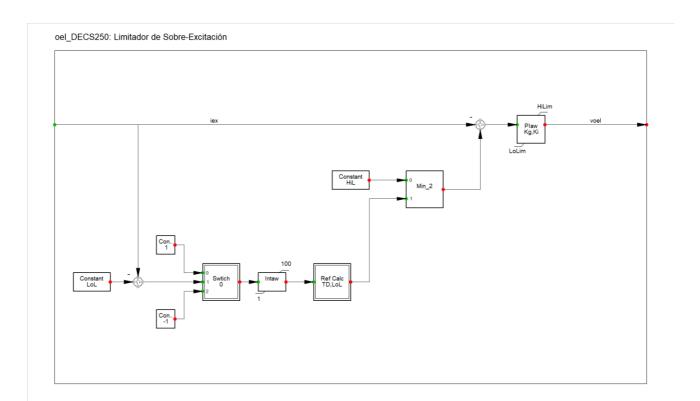


Figura 3.12 - Diagrama de bloques del modelo del OEL

La parametrización del modelo se presenta en la Tabla 3-2.

	Parameter
▶Kg Ganancia de lazo [pu]	13.
Ki Ganancia integral [1/s]	7.5
Hil Nivel de alta corriente [pu]	6.262
LoL Nivel de baja corriente [pu]	4.879
TD Ctte de tiempo de acumulación [s]	0.1
LoLim Limite inferior de salida [pu]	-0.5
HiLim Limite superior de salida [pu]	0.5

Tabla 3-2 - Parámetros del OEL - Unidad ST

Dadas las restricciones del sistema de transmisión de absorber el reactivo necesario al momento de los ensayos, durante las pruebas se modificó transitoriamente el ajuste del limitador de acuerdo con lo detallado en la Tabla 3-3.

	LoL [pu]	HiL [pu]
Valores originales	4.879	6.262
Ensayo Baja Carga	4.019	4.626
Ensayo Media Carga	4.392	5.037
Ensayo Alta Carga	4.626	5.028

Tabla 3-3 - Seteos reducidos para el OEL

Validación del modelo del UEL

En la Figura 3.19 se presenta el diagrama de bloques del modelo del UEL desarrollado siguiendo la información recopilada en planta y la del fabricante.

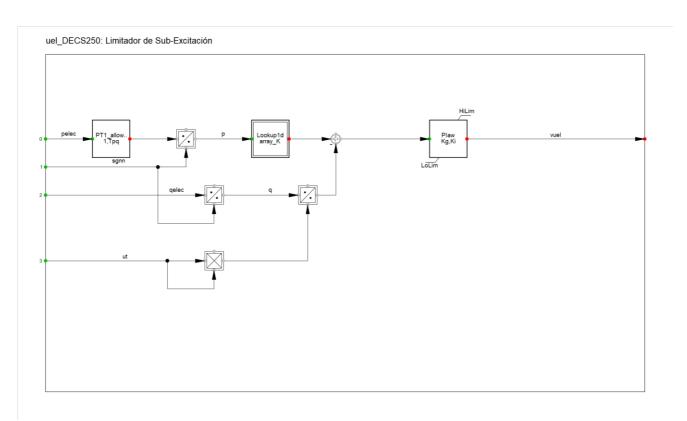


Figura 3.19 - Diagrama de bloques del modelo del UEL

La parametrización del modelo se presenta en la Tabla 3-4.

	Parameter
Kg Ganancia de lazo [pu]	0,75
Ki Ganancia integral [1/s]	0,1
Tpq Ctte de Medicion de Potencia [s]	5,
LoLim Limite inferior [pu]	0,
HiLim Limite superior [pu]	1,

Tabla 3-4 - Parámetros del UEL - Unidad ST

El ajuste del limitador es el detallado en la Tabla 3-5.

	K_x	K_y
Size	5,	5,
1	0,	-0,2941482
2	0,2395714	-0,2941482
3	0,4503943	-0,2587372
4	0,7282972	-0,2108229
5	0,9966173	-0,2108229

Tabla 3-5 – Tabla del UEL

Validación del modelo del SCL

En la Figura 3.23 se presenta el diagrama de bloques del modelo del SCL desarrollado siguiendo la información recopilada en planta.

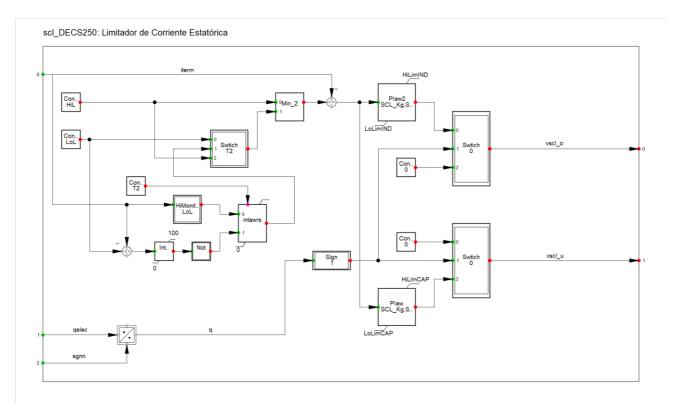


Figura 3.23 - Diagrama de bloques del modelo del SCL

La parametrización del modelo se presenta en la Tabla 3-6.

	Parameter
SCL_Kg Ganancia de Lazo [pu]	0,05
SCL_Ki Ganancia integral [pu]	0,0625
T2 Tiempo de corriente media [s]	20,
Hil Nivel de alta corriente SCL [pu]	1,1053
LoL Nivel de baja corriente SCL [pu]	0,9989
LoLimIND Limite inferior de salida inductivo [pu]	-1,
LoLimCAP Limite inferior de salida capacitivo [pu]	0,
HiLimIND Limite superior de salida inductivo [pu]	0,
HiLimCAP Limite superior de salida capacitivo [pu]	1,

Tabla 3-6 - Parámetros del SCL - Unidad ST

Curva de capacidad efectiva

Finalmente, a partir de los ensayos realizados en terreno y de los seteos de los limitadores se confeccionó la curva de capacidad efectiva de la unidad.

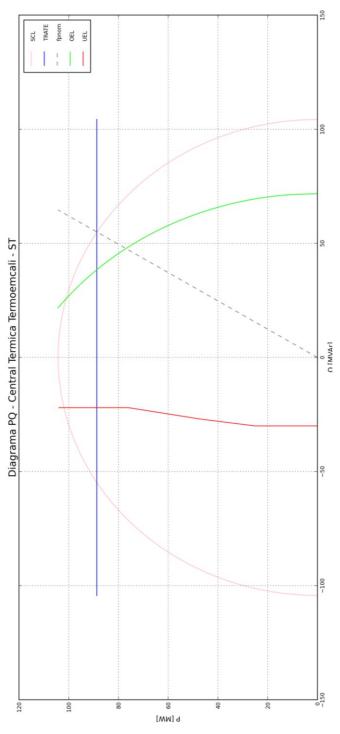


Figura 3.30 - Curva de capacidad efectiva - Unidad ST

ESTABILIZADOR DE SISTEMAS DE POTENCIA

En la Figura 4.1 se presenta el diagrama de bloques del modelo del estabilizador de sistemas de potencia desarrollado a partir la información recopilada en planta y la del fabricante.

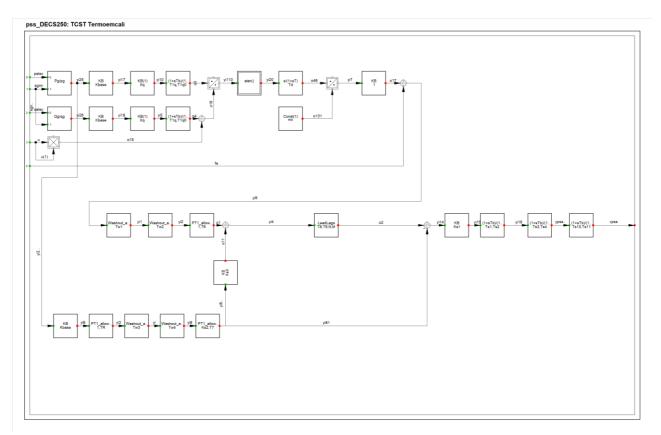


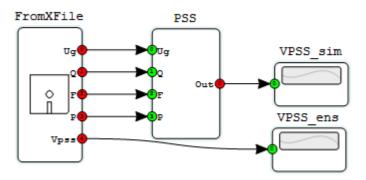
Figura 4.1 - Diagrama de bloques del PSS

Los ajustes del PSS fueron calculados en función a los resultados del informe técnico elaborado por Estudios Eléctricos S.A. "EE-EN-2018-0991-RB_Informe Sintonizacion PSS Termoemcali_ST" para la Central Térmica Termoemcali.

	Parameter
Tw1 1th Washout 1th Time Constant [s]	2,
TR Constante de tiempo transductor de potencia [s]	0,
Tw4 2th Washout 2th Time Constant [s]	2,
T6 1th Signal Transducer Time Constant [s]	0,01
Tw2 1th Washout 2th Time Constant [s]	2,
Tw3 2th Washout 1th Time Constant [s]	2,
Ks2 2th Signal Transducer Factor [pu]	0,238
T7 2th Signal Transducer Time Constant [s]	2,
Ks3 Washouts Coupling Factor [pu]	1,
Ks1 PSS Gain [pu]	10,
Kbase Cambio de bases [MVA/MVA]	1,
Ts1 1th Lead-Lag Derivative Time Constant [s]	0,1
Ts2 1th Lead-Lag Delay Time Constant [s]	0,05
Ts3 2th Lead-Lag Derivative Time Constant [s]	0,1
Ts4 2th Lead-Lag Delay Time Constant [s]	0,05
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,5
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,02
Xq Quadrature axis sincronous reactance [pu]	0,3
Td Frecuency estimation time constant [s]	0,02
wo Velocidad Base [rad/s]	314,1592
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,5
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
N Ramp Tracking Filter N exponent [pu]	1,
M Ramp Tracking Filter M exponent [pu]	5,
T1q PDT1 Deriv. Time Constant [s]	0,01
T1q0 PDT1 Delay Time Constant [s]	0,01

Tabla 4-1 - Parámetros del PSS - Unidad Nº1

Validación a lazo abierto


De manera de validar el modelo del PSS y los parámetros se realiza primeramente una validación a lazo abierto del PSS. Dicho proceso consiste en la aplicación de las variables eléctricas registradas en terreno sobre el modelo de PSS desarrollado para luego comparar la señal registrada del PSS con la salida del modelo ante tales entradas.

Escalado de señales:

Señal	Registros	Escalado DigSilent
FREC	Hz	/60
VPSS	pu	-
QELEC	pu	*104.353
PELEC	pu	*104.353
ETERM	pu	-

Tabla 4-2: Escalado de

señales PSS LA

Figura 4-1: Proceso de validacion del PSS a lazo abierto.