

ANEXOS UNIDAD 1 TERMODORADA

DATOS GENERALES

Tabla 1. Datos del generador

Dato	Valor	Dato	Valor	Dato	Valor
Marca	Brush	Potencia activa nominal	58,899 MW	Tensión nominal	13,8 kV
Potencia aparente nominal	69,294 MVA	Factor de potencia nominal	0,85	Tipo de excitatriz	Brushless

Tabla 2. Datos de la excitación

Dato	Valor	Dato	Valor	Dato	Valor
Tipo	Brushless	Marca AVR	Brush	Voltaje de techo positivo	200 V
Alimentación	PMG	Modelo AVR	Prismic -A30	Voltaje de techo negativo	0 V

Tabla 3. Datos del control de velocidad

Dato	Valor	Dato	Valor	Dato	Valor
Marca	Woodward	Modelo	NetConn 5000	Tipo	Digital

Tabla 4. Datos de la turbina

Dato	Valor	Dato	Valor	Dato	Valor
Marca	Pratt & Whitney	Modelo	FT8	Potencia	50 MW

Tabla 5. Capacidad efectiva de la unidad (según combustible)

Dato	Valor	Combustible	Dato	Valor	Combustible
CEN	44 MW	Jet A-1	CEN	51 MW	Gas
CEN	45 MW	ACPM			

Tabla 6. Valores base para cálculos

Dato	Descripción	Valor	Dato	Descripción	Valor
MBASE	Potencia aparente	69,294MVA	UNOM	Tensión del generador	13,8kV
TRATE	Potencia nominal de turbina	50,0MW	VFD _{BASE}	Tensión de campo de la excitatriz	5,36V
IEXBASE	Corriente de campo de la excitatriz	0,86A			

Tabla 7. Parámetros técnicos del generador de la Central Termodorada

<u>N</u> ame	Gen Termodo	orada 75ºC	
Nominal App	parent Power	69,294	MVA
Nominal Vol	tage	13,8	kV
Power Facto	or	0,85	
Connection		YN 🔻	
Inertia —			→
Inertia Co	onstant H (rated t	o Sgn)	1.31 s
Stator Re	esistance and Re	actance -	
rstr	0,	p.u.	
xl	0,115	p.u.	
xrld	0,	p.u.	
xrlq	0,	p.u.	
Rotor Typ	oe —		Synchronous Reactances
○ <u>S</u> alier			<u>x</u> d 2,28 p.u.
	d Rotor		х <u>а</u> 2,09 р.ш.
_ Transient	Time Constants		Transient Reactances
Td0'	7,05	s	<u>x</u> d' 0,186 p.u.
Tq0'	1,2	s	<u>x</u> q' 0,294 p.u.
Subtransi	ient Time Consta	nts	Subtransient Reactances
Td0"	0,0177	<u>→</u>	<u>x</u> d" 0,169 p.u.
Tq0"	0,0284	s	кq" 0.169 р.и.
- Zem Sea	uence Data		Negative Sequence Data
Reactand		p.u.	Reactance x2 0.174 p.u.
Registano		p.u.	Resistance r2 0, p.u.
Main Flux 9			
	n Parameter	ponential (SG10/SG	i12) •
SG10	0,12	p.u.	1,60
SG12	0,37	p.u.	[p.u.]
3012	10,07	p.u.	1,20
			0.80
			0,40
			0,00
			0 125 250 375 500 Terminal voltage (non-saturated) life in %
			Terminal voltage (non-saturated)

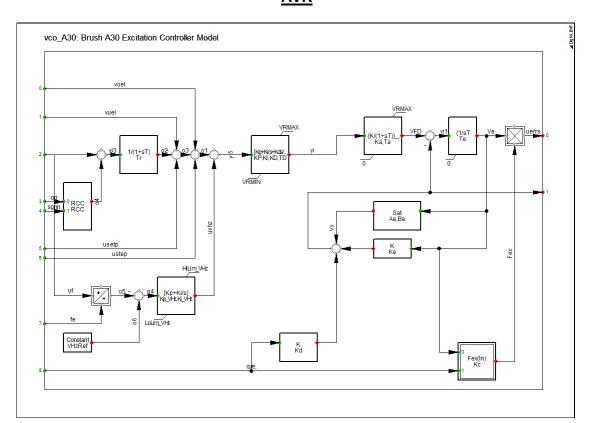


Figura 1. Diagrama de bloques del AVR

Tabla 8. Parámetros del modelo del AVR

	Parameter
RCC Compensador de Reactiva [%,]	0,05
Ka Ganancia puente rectificador [p.u.]	1,
Ta Ctte tiempo puente rectificador [s]	0,005
Tr Ctte tiempo medicion UT [s]	0,02
Te Ctte tiempo excitatriz [s]	1,875
Kc Constante regulacion puente rectificador [p.u.]	0,2
Ke Ctte excitatriz [p.u.]	1,
Kd Constante reaccion armadura [p.u.]	1,
Ae Factor proporcional [p.u.]	0,02
Be Factor exponencial [p.u.]	0,7
KP Ganancia proporcional [pu]	105,
KI Ganancia integral [pu]	9,
KD Ganancia derivativa [pu.s]	18,
TD Ctte tiempo accion derivativa [s]	0,025
VRMIN Limite inferior controlador [p.u.]	0,
VRMAX Limite superior controlador [p.u.]	37,31

LIMITADOR V/HZ

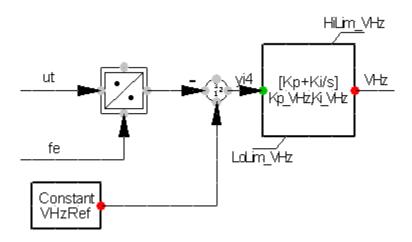


Figura 2. Diagrama de bloques del modelo del V/Hz

Tabla 9. Parámetros del limitador de V/Hz

	Parameter
Kp_VHz Ganancia Proporcional Pl VHz [p.u.]	40,
Ki_VHz Ganancia Integral PI VHz [p.u.]	5,
VHzRef	1,08
LoLim_VHz Limite inferior VHz [p.u.]	-1,
HiLim_VHz Limite superior Vhz [p.u.]	0,

LIMITADOR DE SOBRE EXCITACIÓN (OEL)

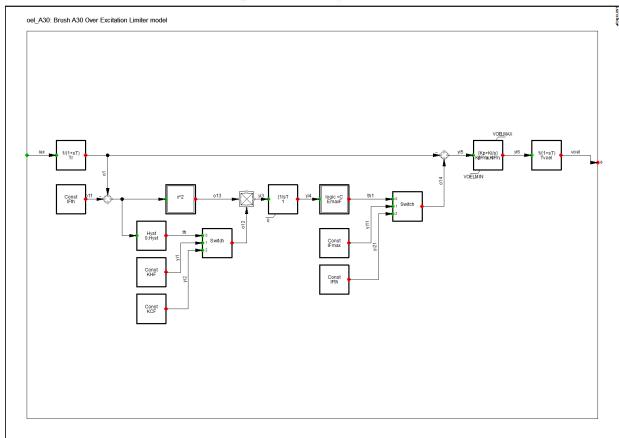


Figura 3. Diagrama de bloques del modelo de OEL

Tabla 10. Parámetros del limitador OEL

	Parameter
►Tr Ctte de tiempo medicion IFD [s]	0,1
Hyst Histeresis Pick Up [pu]	-0,05
EmaxF Energia termica maxima [pu.seg]	9,6
IFth Corriente de campo termica maxima [pu]	6,936
KplFmax Ganancia proporcional [pu]	0,0175
KilFmax Ganancia integral [pu]	0,15
IFmax Corriente de campo instantanea maxima [pu]	19,142
KHF Constante de calentamiento [pu/seg]	1,
KCF Constante de enfriamiento [pu/seg]	-1,
Tvoel Ctte de tiempo de salida [s]	0,25
VOELMIN Limite inferior del limitador [pu]	-1,5
VOELMAX Limite superior del limitador [pu]	0,

LIMITADOR DE SUB EXCITACIÓN (UEL)

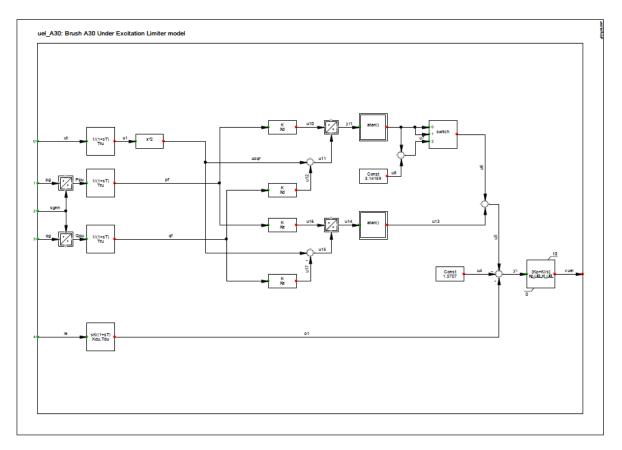


Figura 4. Diagrama de bloques del modelo de UEL

Tabla 11. Parámetros del limitador UEL

	Parameter
►Tru Cte. de tiempo del transductor UEL [pu]	0.01
Kdu Ganancia de estabilizacion UEL [pu]	. 3,
Tdu Cte. de tiempo de estabilizacion UEL [pu]	0,1
Xd Reactancia interna [pu]	3,465
Xe Reactancia externa [pu]	0,18
Kp_UEL Constante proporcional del PI del UEL [pu]	0,01
Ki_UEL Constante integral del PI del UEL [seg]	0,02

REGULADOR DE VELOCIDAD

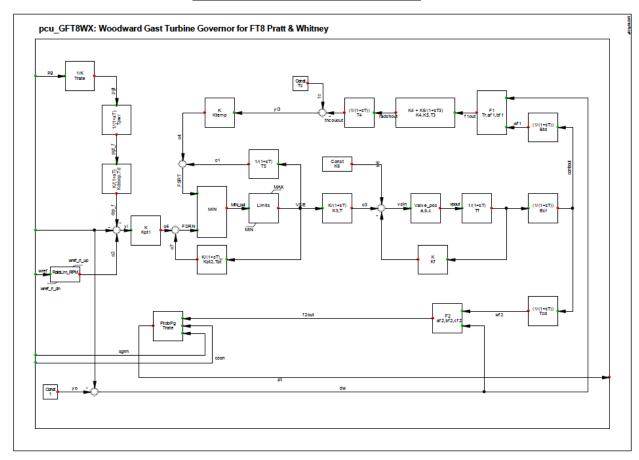


Figura 5. Modelo de simulación del regulador de velocidad

Tabla 12. Parámetros del modelo de regulador de velocidad

	Parameter
Kdroop Power Controller Droop [pu]	0,04
Td Power Transducer Delay Time [s]	0,
Kpt2 Speed Controller Integral Factor [1/s]	1,
Tpt Speed Controller Integral Time [s]	12,25
Tcd Turbine Dynamics Delay Time [s]	0,
Etd Turbine Exhaust Delay [s]	0,
Ecr Combustor Delay Time [s]	0,
Trate Turbine Rated Power [MW]	50,
a Valve Positioner Prop. Characteristic [pu]	1,
b Valve Positioner Time Constant [s]	0,01
c Valve Positioner I/L Factor (0/1) [pu]	1,
Tf Fuel System Delay [s]	0,01
T5 Temperature Controller Time Constant [s]	1,5
Kf Fuel System Feed Back Factor [pu]	0,
Ktemp Temperature Controller Prop. Gain [pu]	0,0002
Kpt1 Speed Controller Proportional Factor [pu]	6,5
K4 Radiation Shield Prop. Factor [pu]	0,8

	Parameter
K5 Radiation Shield Integr. Factor [pu]	0,2
T3 Radiation Shield Time Constant [s]	15,
T4 Thermocouple Time Constant [s]	0,5
Tr Rated Exhaust Temperature [grd.F]	1547,
af1 Turbine 1th Factor [pu]	450,
bf1 Turbine 2th Factor [pu]	550,
af2 Turbine Characteristic, Constant [pu]	-0,08
bf2 Turbine Characteristic, Torque [pu]	1,88
cf2 Turbine Characteristic, Speed [pu]	0,
Tpwr Power Transducer Delay Time [s]	5,
K6 Compressor Factor (Min. Flow) [pu]	0,
To Temperature Control Setpoint [grd. F]	1358,
K3 Fuel Control Gain [pu]	1,25
T Fuel Control Delay Time [s]	0,
wref_rl_dn Reference Lower Rate Limiter [RPM]	-0,48
MIN VCE Lower Limit [pu]	0,
wref_rl_up Reference Upper Rate Limiter [RPM]	0,48
MAX VCE Upper Limit [pu]	1,

REGULADOR DE CARGA (AUTOMÁTICO)

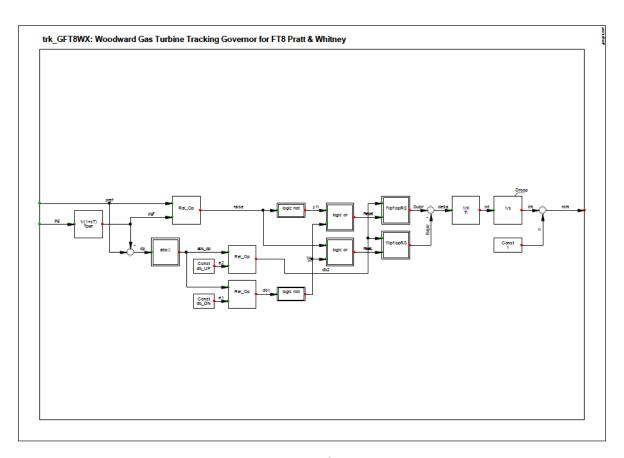


Figura 6. Modelo de simulación del regulador de carga

Tabla 13. Parámetros del regulador de carga

	Parameter
►Tpwr Active power measurement time constant [s]	2,
db_DN Tracking lower band [MW]	0,2
db_UP Tracking upper band [MW]	0,2
Ti Integral Time Constant [s]	7000,
Droop	0,04