

ANEXO Salto II

1. Parámetros del Generador

TAG	Descripción	Valor	Unida d
Sn	Potencia aparente nominal	40.4	MVA
Vn	Tensión nominal	13.8	KV
fp	Factor de potencia nominal	0.8	pu
Xd	Reactancia sincrónica eje directo	1.176	pu
Χq	Reactancia sincrónica eje cuadratura	0.714	pu
Xd'	Reactancia transitoria eje directo	0.29	pu
Td0′	Constante de tiempo transitoria de eje directo	6.3	S
Xd"	Reactancia subtransitoria eje directo	0.185	pu
Xq"	Reactancia subtransitoria eje cuadratura	0.24	pu
Td0"	Constante de tiempo subtransitoria de eje directo	0.04	S
Tq0"	Constante de tiempo subtransitoria de eje cuadratura	0.2	S
ΧI	Reactancia de dispersión	0.18	pu
S1.0	Parámetro de saturación a ETERM = 1.0 pu	0.17	pu
S1.2	Parámetro de saturación a ETERM = 1.2 pu	0.39	pu
IFDbas	Corriente de campo base	292.5	Α
TG	Tipo de Generador (Liso / Saliente)	Saliente	-
TSAT	Tipo de saturación	Cuadrática	-
IFDnom	Corriente de campo nominal	710	Α
IFDmin	Corriente de campo mínima	128	Α
Н	Constante de Inercia	2.261	S

Tabla 1. Parámetros del Generador

2. Modelo del Sistema de Excitación

2.1 Modelo del AVR

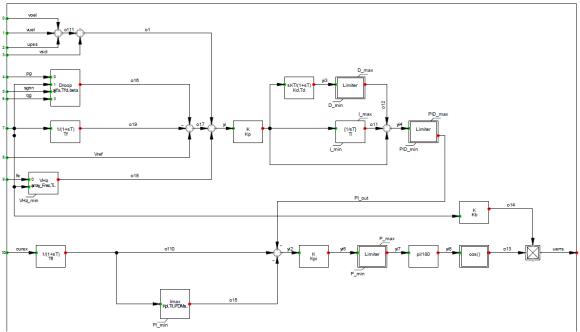


Figura 1. Diagrama de bloques del AVR

	Parameter
►Tf Cte, de tiempo medicion V [s]	0,0098
TMHz Constante de tiempo I VHz [seg]	2,1165
Tfi Cte. de tiempo medicion I [s]	0,002
Kp Ganancia proporcional PID tension [pu]	10,5
Kb Ganancia puente [pu]	6,08
Kpi Ganancia proporcional P corriente [pu]	240,
Ti Cte. de tiempo integral PID tension [pu]	0,295
Kd Ganancia derivativa PID tension [pu]	0,
Td Cte. de tiempo derivativa PID tension [pu]	0,0059
Kpl Ganancia proporcional Pl Imax [pu]	0,
Til Constante de tiempo PI Imax [seg]	0,0305
IFDMax Limite instantaneo de corriente de campo [pu]	2,584885
alfa Droop P [pu]	0,
Tfd Constante de tiempo Droop [seg]	0,
beta Droop Q [pu]	0,
VHz_min Limite inferior VHz [pu]	-0,9
D_min Lim. inf. derivativo [pu]	0,
PID_min Lim. inf. PID [pu]	-1600,
P_min Angulo minimo de disparo [*]	4,55
I_min Lim. inf. integral [pu]	-20,
Pl_min Limite Pl Imax [pu]	-17,8
D_max Lim. sup. derivativo [pu]	2,403
PID max Lim. sup. PID [pu]	2,403
P_max Angulo maximo de disparo [*]	207,48
I_max Lim. sup. integral [pu]	2,403

Tabla 2. Parámetros del AVR

2.2 Modelo del limitador V/Hz

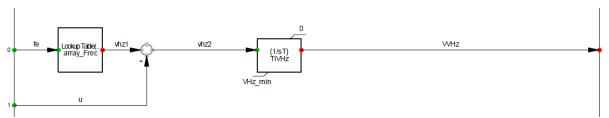


Figura 2. Diagrama de bloques del Limitador V/Hz

	Frec_x	Frec_y
Size	3,	0,
1	0,	0,
2	1,	1,0423
3	2,	1,0423

Tabla 3. Parámetros del Limitador V/Hz

2.3 Modelo del OEL Instantáneo

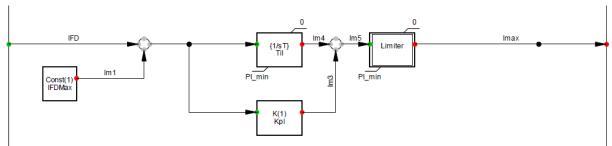


Figura 3. Diagrama de bloques del OEL instantáneo

2.4 Modelo del OEL Temporizado

	Parameter
►T Cte. de temporizacion [s]	15,
IPMAXV Umbral de corriente OEL temporizado [pu]	2,3419
Ti Ganancia OEL temporizado [pu]	100,
IPZONE Histeresis OEL temporizado [pu]	0,985
y_min Limite inferior OEL temporizado [pu]	-10,

Tabla 4. Parámetros del OEL temporizado

^{*}Los parámetros se encuentran también en la Tabla 2 - Parámetros del AVR.

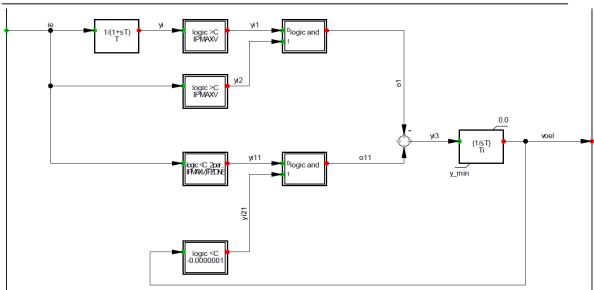
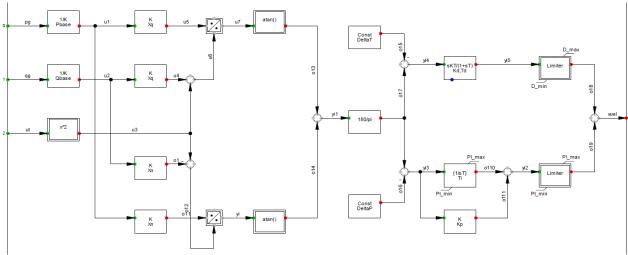
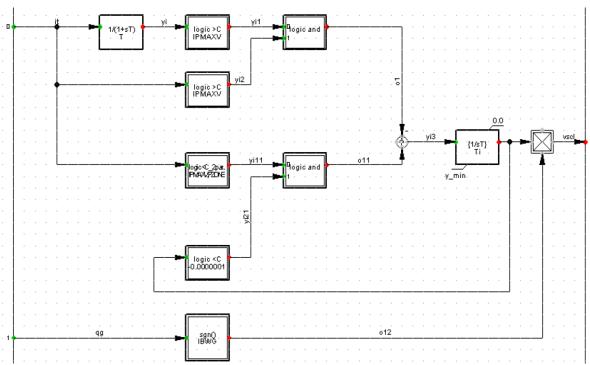


Figura 4. Diagrama de bloques del OEL temporizado

2.5 Modelo del UEL




Figura 5. Diagrama de bloques del UEL

	Parameter
▶Pbase Potencia Activa base [MW]	40,4
Qbase Potencia Reactiva base [MVAr]	40,4
Xq Reactancia en cuadratura [pu]	1,
Xn Reactancia de vinculacion [pu]	0,1201
Kd Ganancia derivativa UEL [pu]	1,5
Td Cte. de tiempo derivativa UEL [pu]	1,001
Ti Cte. de tiempo integral UEL [pu]	250,
Kp Ganancia proporcional UEL [pu]	0,
DeltaP Angulo estacionario limite [*]	60,01
DeltaT Angulo temporal limite [*]	70,01
D_min Lim. inf. derivativo [pu]	0,
Pl_min Lim. inf. Pl [pu]	0,
D_max Lim. sup. derivativo [pu]	14,
Pl_max Lim. sup. Pl [pu]	14,

Tabla 5. Parámetros del UEL

2.6 Modelo del SCL

Figura 6. Diagrama de bloques del SCL

	Parameter
▶T Cte. de temporizacion [s]	50,
IPMAXV Umbral de corriente SCL [pu]	1,0503
Ti Ganancia SCL [pu]	100,
IPZONE Histeresis SCL [pu]	0,98
IBWG Banda muerta de actuacion [MVAr]	0,1
y_min Limite inferior SCL [pu]	-10,

Tabla 6. Parámetros del SCL

3. Modelo del PSS

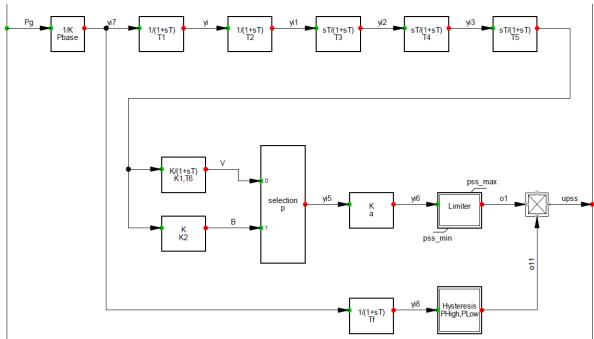


Figura 7. Diagrama de bloques del PSS

	Parameter
►Tw1 1st Washout 1th Time Constant [s]	5,
Tw2 1st Washout 2th Time Constant [s]	5,
Td Cte de tiempo derivador slip [s]	0,02
T6 1st Signal Transducer Time Constant [s]	0,02
Tw3 2nd Washout 1th Time Constant [s]	5,
Tw4 2nd Washout 2th Time Constant [s]	5,
Ks2 2nd Signal Transducer Factor [pu]	1,0776
T7 2nd Signal Transducer Time Constant [s]	5,
Ks3 Washouts Coupling Factor [pu]	1,
Ks1 PSS Gain [pu]	0,503
Xq Reactancia para slip [pu]	0,6499
Ts1 1st Lead-Lag Derivative Time Constant [s]	0,1099
Ts2 1st Lead-Lag Delay Time Constant [s]	0,0103
Ts3 2nd Lead-Lag Derivative Time Constant [s]	0,1099
Ts4 2nd Lead-Lag Delay Time Constant [s]	0,0103
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,4
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
N Ramp Tracking Filter [-]	1,
M Ramp Tracking Filter [-]	4,
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,1602
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,5601
Vstmin Controller Minimum Output [pu]	-0,1
Vstmax Controller Maximum Output [pu]	0,1

Tabla 7. Parámetros del PSS

4. Modelo de las Conducciones Hidráulicas

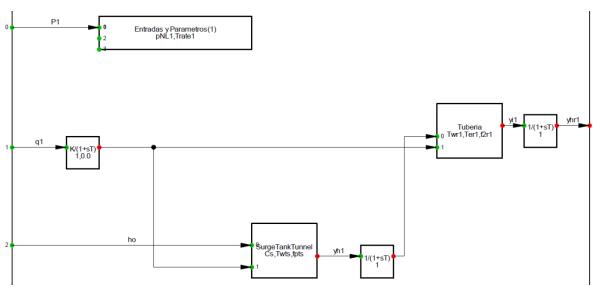


Figura 8. Diagrama de bloques de la Conducción

	Parameter
▶pNL1 Caudal de vacio Unidad 1 [pu]	0,05
Trate1	35,
Twr1 Tw ramal 1 [seg]	0,647
Ter1 Te ramal 1 [seg]	0,5987
f2r1 Coeficiente de rozamiento ramal 1 [pu]	0,025
Cs Capacidad Surge Tank [1/seg]	692,91
Twts Tw tunel [seg]	0,8
fpts Coeficiente de rozamiento tunel [pu]	0,025

Tabla 8. Parámetros de la Conducción

5. Modelo de la Turbina

	PosPmech_x	PosPmech_y
Size	12,	12,
1	0,	0,
2	0,1	0,1174
3	0,2	0,2738
4	0,3	0,4303
5	0,4	0,5379
6	0,5	0,6259
- 7	0,6	0,7384
8	0,7	0,8362
9	0,8	0,9095
10	0,9	0,9633
11	1,	0,978
12	1,05	0,979

Tabla 9. Característica de la Válvula

pNL Potencia de vacío [pu]	0,05
Tw Constante de tiempo del agua [seg]	0,03
D Constante de turbina [pu]	0,

Tabla 10. Parámetros de la Turbina

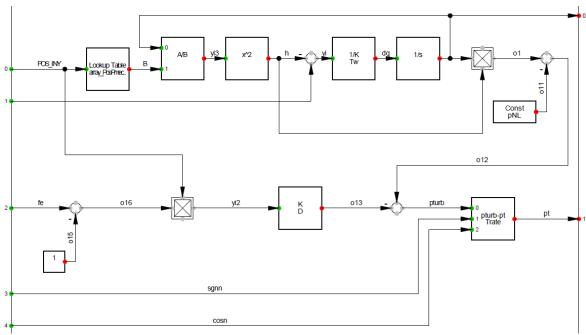


Figura 9. Diagrama de bloques de la Turbina

6. Modelo del Regulador de Velocidad

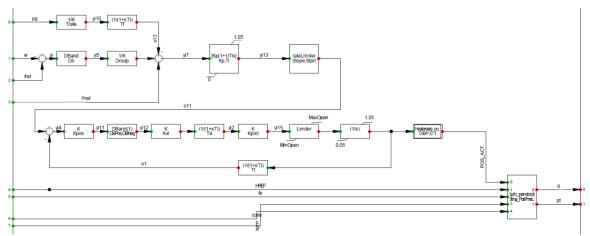


Figura 10. Diagrama de bloques del Regulador de Velocidad

	Parameter
►Kpos Ganancia ctrl. de posicion [pu]	10,
Kpist Ganancia posicionador [pu]	0,02
Kvi Cte. valvula intermedia [pu]	2,
Tt Cte tiempo transductor de posicion [s]	0,05
Tf Cte, de tiempo filtro potencia [s]	3,5
Tvi Cte, tiempo valvula intermedia [pu]	0,8
DBP Banda muerta posicion [pu]	0,
Droop Estatismo [pu/pu]	0,05
Trate Potencia nominal de turbina [MW]	35,
DBPos Banda Muerta Pos Agj 1 - Pos [pu]	0,
DBNeg Banda Muerta Pos Agj 1 - Neg [pu]	0,
Db Banda muerta frecuencia [pu]	0,0005
Kp Ganancia proporcional ctrl. potencia [pu]	0,3
Ti Cte, tiempo integral ctrl, potencia [s]	24,
Slope Rate limit Consigna Posicion [pu/s]	0,03
Start Fin Rate limit Consigna Posicion [pu]	0,2
MinOpen Lim Inf [pu]	-0,05
MaxOpen Lim Sup [pu]	0,05

Tabla 11. Parámetros del Regulador de Velocidad