Aplicación de la metodología de estimación de caudal ambiental propuesta por el MADS, en el Sector Eléctrico Colombiano.

Abril de 2018

Objetivo

 Presentar el impacto de la aplicación de la guía metodológica para la estimación del caudal ambiental en la operación del Sistema Interconectado Nacional.

Contenido

Cifras Sistema Interconectado Nacional

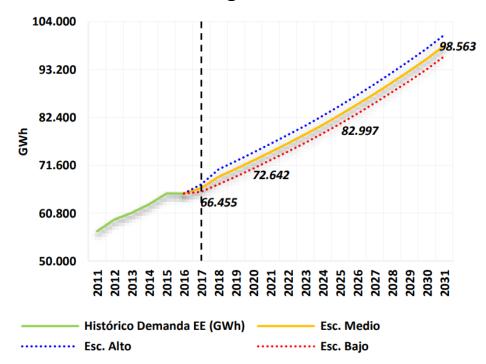
Resultados cálculo caudal aprovechable

Escenarios considerados

Resultados simulaciones

Conclusiones

Sistema Interconectado Nacional


Capacidad Efectiva Neta (MW)

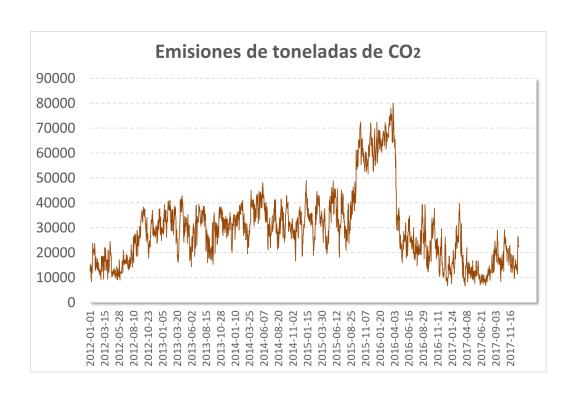
Recursos	2012	2013	2014	2015	2016	2017
Hidráulicos	9,185	9,315	10,315	10,892	10,963	10,943
Térmicos	4,426	4,515	4,402	4,743	4,728	4,729
Menores	674	644	677	680	753	920.13
Cogeneradores	57	66	77	86	99	122
Autogeneradores					32	36
Eólica	18	18	18	18	18	18
Solar						10
Total	14,361	14,558	15,489	16,420	16,594	16,778

Generación de energía (GWh)

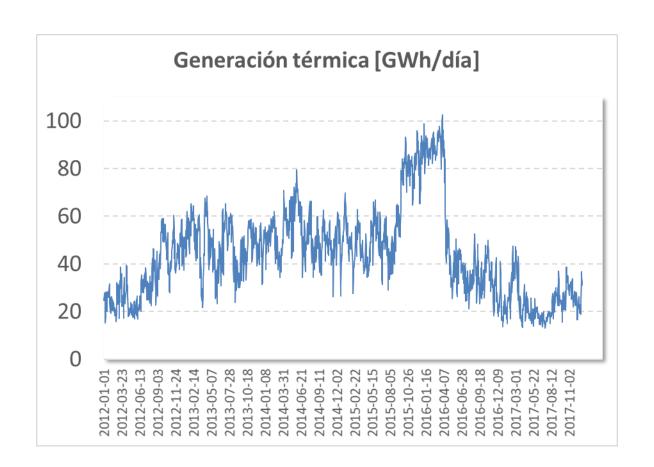
	<u> </u>	Cracio	ii ac ci	icigia i	OVVIII	
Recursos	2012	2013	2014	2015	2016	2017
Hidráulicos	44,923	41,835	42,157	42,463	44,246	53,568
Térmicos	11,506	16,839	18,406	20,631	17,790	7,941
Menores	3,158	3,112	3,222	2 <i>,</i> 859	3,142	4,421
Cogeneradores	346	351	472	526	600	649
Autogeneradores					111	109
Eólica	55	58	70	68	51	3
Solar						5
Total	59,989	62,197	64,328	66,548	65,940	66,681

Proyecciones crecimiento demanda de energía eléctrica

Fuente: UPME



Fuente: XM


Sistema Interconectado Nacional

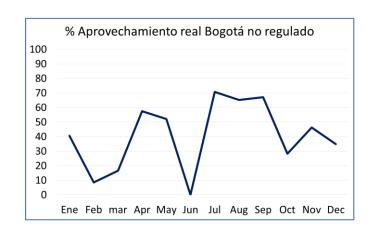
	-					
Año	2012	2013	2014	2015	2016	2017
Millones de	7.498	11 121	12 102	15 201	13.103	E 72E
Toneladas de CO2	7,430	11,121	12,105	15,301	13,103	5,725

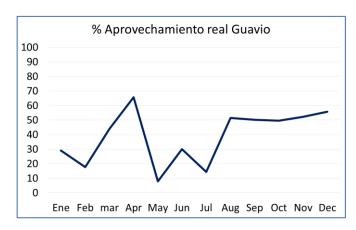
Meta de emisiones de gases de efecto invernadero par la generación de energía eléctrica al año 2030 es de 13,53 Millones de Ton de CO₂

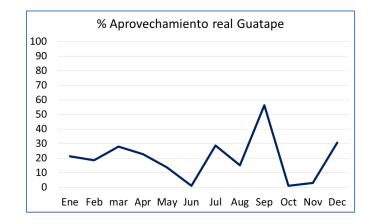
Supuestos - Aplicación de la Guía

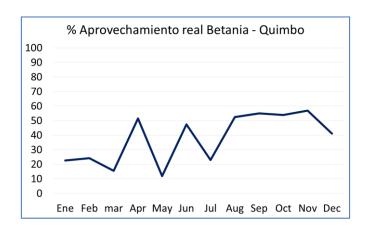
Consideraciones para el cálculo de Aprovechamientos

- Se utilizan series de caudales disponibles en resolución diaria.
- Se supuso que todas las series de caudales analizadas presentan una buena correlación con el ONI, separando de esta manera los caudales para condiciones seca, normal y húmeda.
- Para la métrica de interés ecológico que garantiza conectividad lateral (QB) se consideran como sensibilidad caudales máximos de periodo de retorno de 2.33 y 5 años.
- Para la métrica de interés ecológico que garantiza conectividad longitudinal (Qt-q) se consideran como sensibilidad caudales mínimos de períodos de retorno de 2 y 5 años.
- Se utiliza la prueba F (Fisher) para determinar si las muestras de los eventos poseen varianzas iguales o diferentes.
- Se utiliza la prueba t (t student) tanto para varianzas iguales como para varianzas distintas según sea el caso.
- Se aplican las pruebas estadísticas (F, t student) a nivel mensual así se tengan pocos datos y los resultados presenten gran incertidumbre.
- El nivel de significancia usado para aplicar las pruebas estadísticas (F, t student) es del 0.05.
- Los porcentajes de aprovechamientos se definen mes a mes.
- Cuando no se puedan aplicar las pruebas estadísticas se garantiza la ocurrencia de un evento con una duración igual a la media más 25% de la desviación estándar.



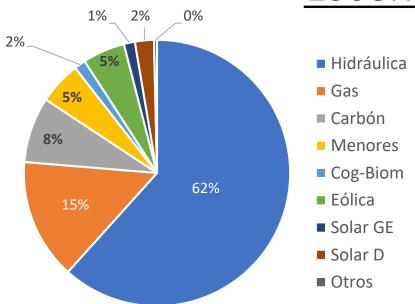



Caudal aprovechable


Porcentajes obtenidos en algunas plantas relevantes del SIN:

Caudal aprovechable

Se calcularon aprovechamientos máximos para 24 series del sistema con los siguientes resultados


	[%] Con Respecto a la media mensual multianual de la información operativa																								
	Bog.No regulado	Alto An	Bajo An	Calima	Salvajina	Chivor	Prado	Guavio	Betania	Jaguas	Playas	Neusa	Chuza	Porce3	Porce2	Sisga	Tominé	Tasajera	San Carlos	Guadalupe	Urrá	Guatape	Miel	Ituango	Genérico
Enero	41	36	30	74	11	38	14	29	23	26	16	60	61	20	25	36	42	50	14	26	41	21	9	26	32
Febrero	9	19	23	36	67	11	10	18	24	22	34	56	53	16	22	33	44	30	11	42	18	19	48	7	28
Marzo	17	57	8	56	73	11	12	44	15	19	38	55	59	7	21	40	51	4	11	20	6	28	54	28	31
Abril	57	56	59	44	0	19	18	66	52	13	62	53	67	49	23	47	30	18	35	29	66	23	60	19	40
Mayo	52	62	59	78	1	65	68	8	12	14	54	14	15	8	7	62	64	18	48	60	31	14	59	35	38
Junio	0	66	55	78	52	7	72	30	47	1	58	66	64	42	31	2	7	50	1	63	0	1	53	13	36
Julio	71	52	46	79	60	58	32	14	23	20	64	25	4	11	10	72	73	14	47	17	54	29	19	15	38
Agosto	65	58	38	73	66	57	17	52	53	22	29	40	19	17	6	0	74	31	11	64	49	15	26	16	37
Septiembre	67	59	22	49	38	26	20	50	55	20	24	72	62	32	51	69	71	0	61	16	50	56	50	29	44
Octubre	28	57	56	29	67	58	61	50	54	11	15	65	65	12	13	69	23	31	59	7	28	1	10	24	37
Noviembre	46	56	57	26	3	57	66	52	57	13	2	4	63	31	1	67	62	22	43	4	34	3	0	55	34
Diciembre	35	15	20	14	32	56	66	56	41	39	10	65	64	42	41	48	55	16	53	62	51	31	0	14	39

Escenario Considerado

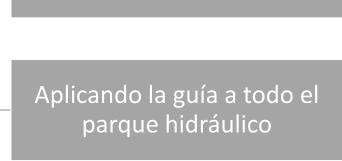
Recurso	Base	Cargo por confiabilidad	Expansión adicional	Total [MW]
Hidráulica	10,963	1,200	2,843	15,005
Gas	3,509	0	57	3,566
Carbón	1,339	250	350	1,939
Menores	787	0	475	1,262
Cog-Biom	126	0	211	337
Eólica	18	0	1,231	1,249
Solar GE	0	0	327	327
Solar D	0	0	560	560
Otros	0	89	0	89
Total	16,742	1,539	6,053	24,334

Costo alternativa = USD\$ 90,110 Millones

		(ronogram	a de Expa	nsión Esce	nario Ba	se			
Cargo por confiabilidad										
Fecha	Hidráulica	Gas	Carbón	Menores	Cog-Biom	Eólica	Solar GE	Solar D	Otros	
nov-17			250.0							
ago-18									88.6	
nov-18	300.0									
feb-19	300.0									
may-19	300.0									
ago-19	300.0									
Total	1200	0	250	0	0	0	0	0	88.6	

				Expansió	n Adicional				
Año	Hidráulica	Gas	Carbón	Menores	Cog-Biom	Eólica	Solar GE	Solar D	Otros
2017				20	36		10	29	
2018		57			38				
2019							72		
2020				165	40	182		97	
2021	600								
2022	600				35				
2023				48		669		132	
2024						380	70		
2025					7				
2026				81	5			150	
2027	1,041								
2028									
2029	55			97				112	
2030	502						49		
2031	45		350	64	50		126	40	
Total	2,843	57	350	475	211	1,231	327	560	0

Escenario


Simulaciones realizadas

Aplicando la guía a proyectos futuros + los que renuevan concesiones a 15 años

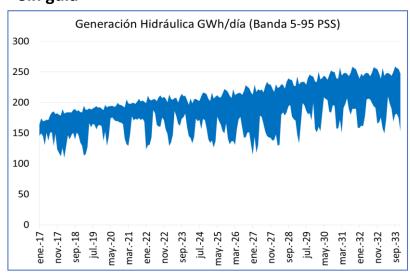
Aplicando la guía solo a proyectos futuros

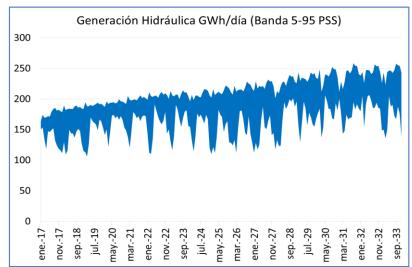
<u>Supuestos – Simulación Energética</u>

Consideraciones para la simulación energética

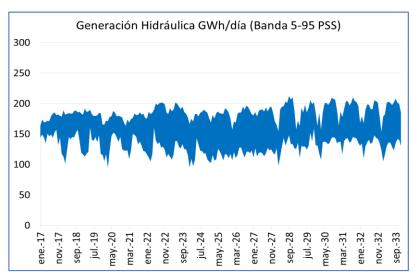
- Las plantas hidroeléctricas existentes operarán como filo de agua ante la aplicación de la metodología.
- Como consecuencia del punto anterior se elimina la Curva de aversión al riesgo (CAR) para el escenario en que la metodología aplica a todo el parque hidroeléctrico.
- Se considera la topología real del sistema
- Se modelan el aprovechamiento real más restrictivo obtenido de las sensibilidades al (Q_B) y (Q_{t-q}) como restricciones operativas para cada una de las plantas hidroeléctricas.
- Para las plantas menores y proyectos de los cuales no se cuenta con información suficiente para aplicar la metodología, se aplica el porcentaje medio de los aprovechamientos.
- En caso de trasvases, se debe cumplir que el caudal natural más el caudal turbinado (caudal trasvasado) no puede ser mayor que el caudal máximo de la cuenca receptora para cada mes en el punto de descarga.
- En caso de turbinamiento sobre la misma cuenca de captación, se debe cumplir que el caudal ambiental más el caudal turbinado no puede ser mayor que el caudal máximo para cada mes en el punto de descarga.

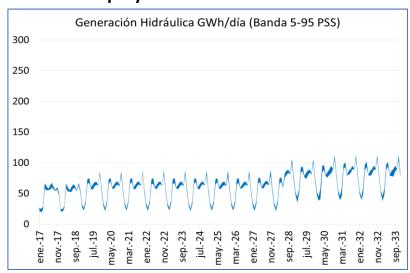
Resultados Escenario

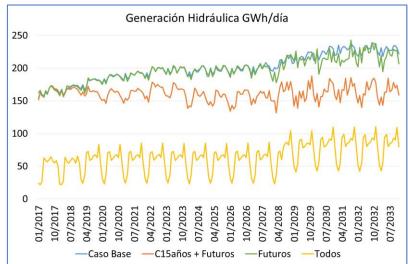



Resultados - Generación hidráulica

XM


Sin guía


Proyectos futuros


Proyectos futuros + Concesiones 15 años

Todos los proyectos hidroeléctricos

Comparación valores medios

Proyectos Futuros:

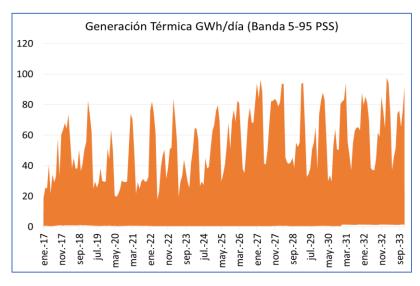
 Reducción de la gen hidroeléctrica prom respecto al escenario de no aplicación de la guía en 4%.

Proyectos Futuros + 15 años:

 Reducción de la gen hidroeléctrica prom respecto al escenario de no aplicación de la guía en 26%.

Proyectos Futuros + todos:

 Reducción de la gen hidroeléctrica prom respecto al escenario de no aplicación de la guía en 65%.

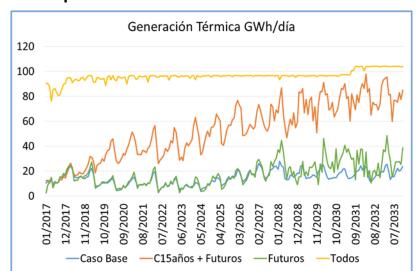


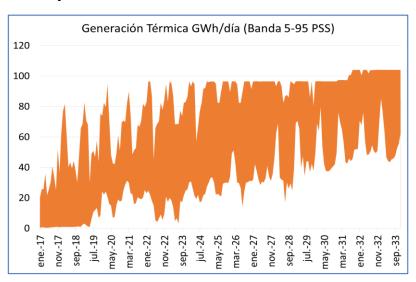


Resultados - Generación Térmica


Xm

Sin guía




Proyectos futuros

Comparación valores medios

Proyectos futuros + Concesiones 15 años

Proyectos Futuros:

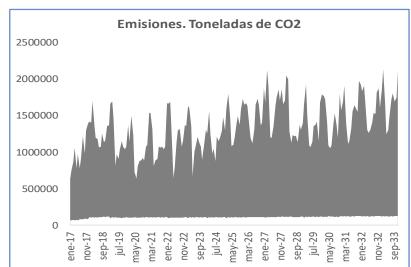
Aumento de la gen térmica promedio respecto al escenario de no aplicación de la guía en 42%.

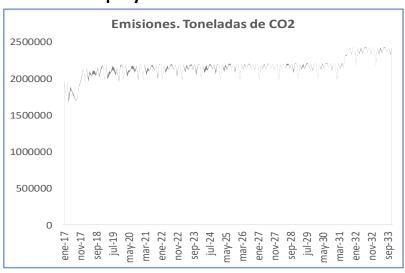
Proyectos Futuros + 15 años:

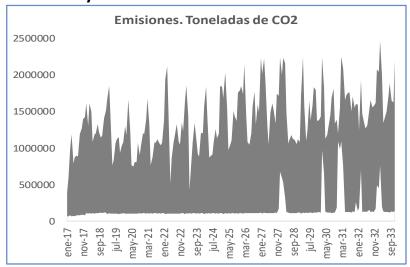
 Aumento de la gen térmica promedio respecto al escenario de no aplicación de la guía en 310%.

Proyectos Futuros + todos:

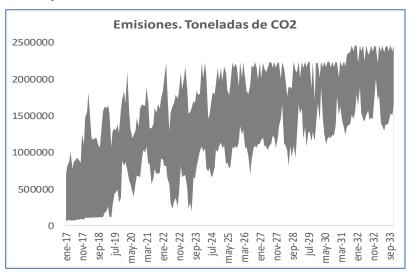
 Aumento de la gen térmica promedio respecto al escenario de no aplicación de la guía en 446%.




Resultados - Emisiones


Sin guía

Todos los proyectos hidroeléctricos


Proyectos futuros

Comparación valores medios

Proyectos futuros + Concesiones 15 años

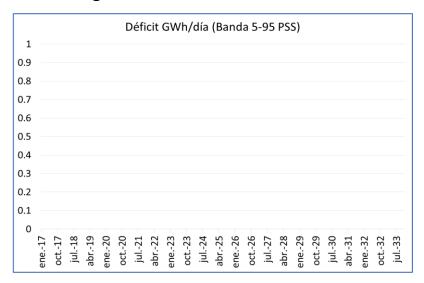
Año 2030	base	Futuros	Futuros + 15	Todos
Millones de Toneladas de CO2*	20,4	21,7	26,2	26,0

Proyectos Futuros:

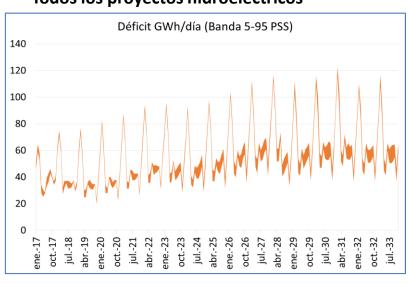
 Aumento de las emisiones promedio respecto al escenario de no aplicación de la guía en 37%.

Proyectos Futuros + 15 años:

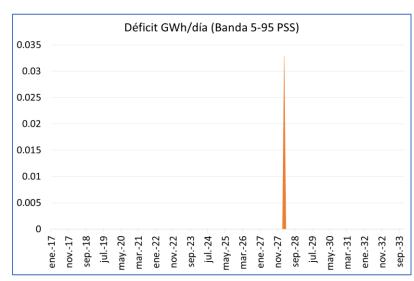
 Aumento de la gen térmica promedio respecto al escenario de no aplicación de la guía en 195%.


Proyectos Futuros + todos:

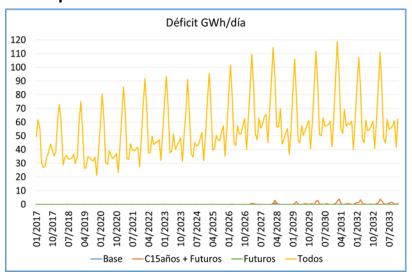
Aumento de la gen térmica promedio respecto al escenario de no aplicación de la guía en 269%.



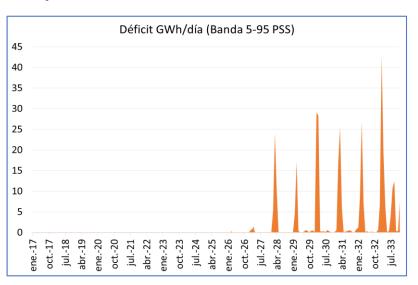
Sin guía



Todos los proyectos hidroeléctricos



Resultados: Déficit


Proyectos futuros

Comparación valores medios

Proyectos futuros + Concesiones 15 años

Proyectos Futuros:

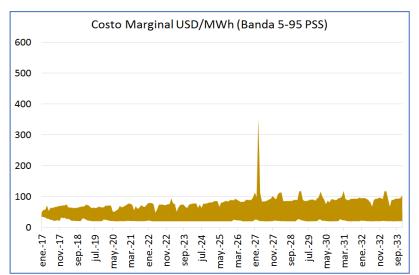
 Alto riesgo de la atención de la demanda. Se evidencian periodos con déficit.

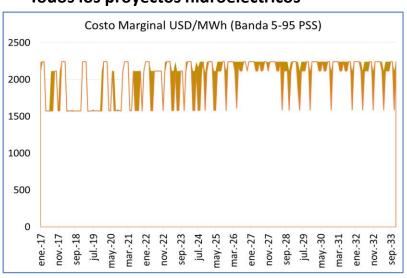
Proyectos Futuros + 15 años:

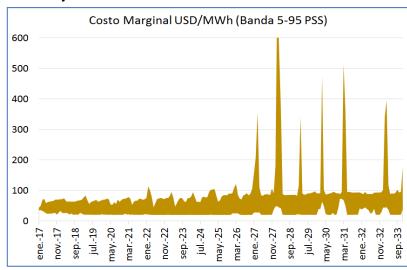
 Imposibilidad de la atención de la demanda. Se presentan casos con déficit recurrente

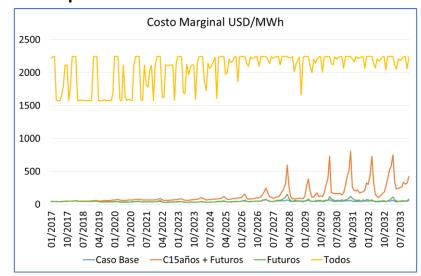
Proyectos Futuros + todos:

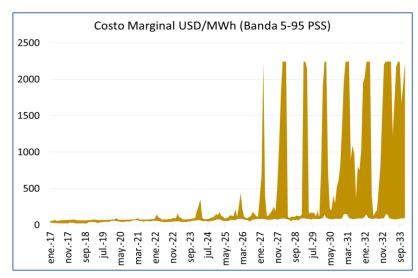
 Imposibilidad de la atención de la demanda. Se presentan casos con racionamiento bajo todos los escenarios.




Resultados - Costo Marginal


Sin guía


Todos los proyectos hidroeléctricos


Proyectos futuros

Comparación valores medios

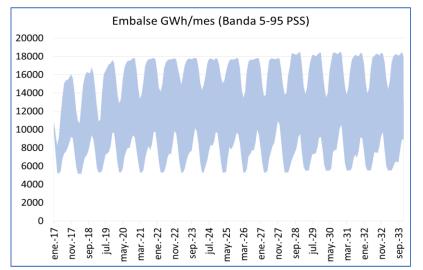
Proyectos futuros + Concesiones 15 años

Proyectos Futuros:

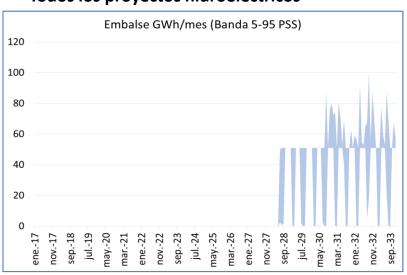
Aumento de costos marginales prom. respecto al escenario de no aplicación de la guía en 26 %.

Proyectos Futuros + 15 años:

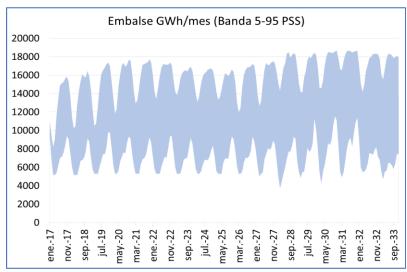
Aumento de costos marginales prom. respecto al escenario de no aplicación de la guía en 410%.


Proyectos Futuros + todos:

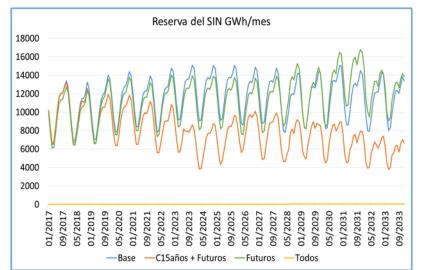
Aumento de costos marginales prom. respecto al escenario de no aplicación de la guía en 4000%.



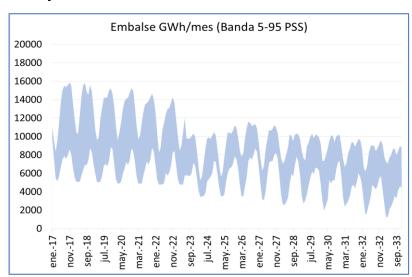
Sin guía



Todos los proyectos hidroeléctricos



Resultados: Reserva del SIN


Proyectos futuros

Comparación valores medios

Proyectos futuros + Concesiones 15 años

Situaciones de alto impacto que no son tenidas en cuenta en la simulación energética.

- No se considera la declinación de los campos de gas.
- No se consideran limitaciones de disponibilidad de combustibles líquidos.
- Las restricciones de red, los análisis de potencia y análisis de resolución inferior a mensual incrementan los racionamientos de energía por potencia.
- No se considera la salida en operación, en el horizonte de análisis, de recursos hidráulicos existentes ante problemas en sedimentos de sus embalses.
- No se considera los efectos económicos de la energía racionada en otros aspectos.

Bajo los supuestos considerados y escenarios simulados se identifica que las restricciones planteadas por la metodología para estimación del caudal ambiental a través del aprovechamiento máximo y limitaciones en los turbinamientos en las centrales hidroeléctricas presentan los siguientes efectos:

Aplicación solo a proyectos futuros

- Alto riesgo de la atención de la demanda. Se evidencian periodos con racionamiento (déficit).
- Aumento de emisiones de gases de efecto invernadero. (Aumento del 42% en gen térmica promedio y 37% de emisiones de CO₂)*
- Incremento en los costos operativos. (Aumento del 26% de los costos marginales promedio del sistema)*
 - * Situación más critica cuando es considerado el escenario de expansión de generación térmica

Aplicación a proyectos futuros + renovación de concesiones a 15 años

- Imposibilidad de la atención de la demanda. Se presentan casos con racionamiento (déficit) recurrente, especialmente en periodos de baja hidrología.
- Aumento de emisiones de gases de invernadero. (Aumento del 310% en gen térmica promedio y 195% de emisiones de CO₂)
- Incremento en los costos operativos. (Aumento del 410% de los costos marginales promedio del sistema)

Aplicación a proyectos futuros + proyectos existentes

- Imposibilidad de la atención de la demanda. Se presentan casos con racionamiento (déficit) bajo todos los escenarios.
- Aumento de emisiones de gases de efecto invernadero. (Aumento del 445% en gen térmica promedio y 270% de emisiones de CO2)
- Incremento en los costos operativos. (Aumento del 4000% de los costos marginales promedio del sistema)

Riesgos de atención de la demanda

- El aprovechamiento máximo de caudales limita la energía eléctrica que pueden generar las plantas hidráulicas.
- La limitación en los turbinamientos afectan los ciclos de las reservas hidráulicas, los cuales permiten garantizar la confiabilidad de abastecimiento de la demanda en periodos de baja hidrología.
- Se presentan incumplimientos en los indicadores de confiabilidad para la atención de la demanda definidos en la reglamentación vigente.
- La flexibilidad del SIN actualmente está soportada en la capacidad de regulación de los recursos hídricos. Reducir dicha capacidad conlleva a la disminución de la flexibilidad del sistema, haciéndolo más vulnerable ante variaciones de la demanda, eventos en la red de transmisión y de recursos de generación, y ante la intermitencia de la generación propia de las Fuentes de Energía Renovable no Convencionales.
- La aplicación de la guía ante condiciones operativas diarias pueden generar a déficits de potencia del sistema adicionales a los mencionados anteriormente, las cuales no son evidentes en el ejercicio dada la resolución mensual considerada y la no inclusión de la red de transmisión.

Incremento de la generación térmica y las emisiones de gases de efecto invernadero

• La generación térmica presenta una tendencia creciente ante la disminución de las reservas hídricas con su consecuente incremento de las emisiones de gases de efecto invernadero. Esta condición es contraria al cumplimiento de las metas del país ante el COP21 y el compromiso adquirido como sector de reducción del 20% de emisiones a 2030.

Costo de la prestación del servicio de la Energía Eléctrica

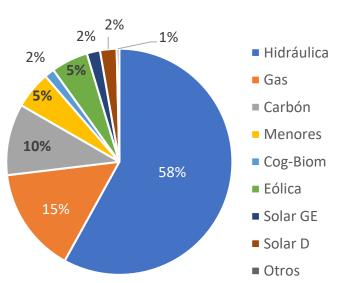
Lo siguientes aspectos tienes un impacto directo en la tarifa de energía eléctrica de los usuarios finales:

- Incremento en el costo total de operación del sistema, costos marginales y precios de bolsa.
- Necesidad de una mayor expansión de capacidad instalada y los requerimientos en red asociados a esta expansión. Esta necesidad ante la presencia déficits y la reducción de Energía Firme de los recursos hidráulicos.
- Necesidad de inversiones en otras tecnologías que pueda de alguna forma suplir algunos servicios prestados actualmente gracias a la capacidad de regulación de los recursos hidráulicos.
- La reducción de costos esperada con la entada de Fuentes de Energía Renovable no Convencional no sería percibida por el usuario final dada la necesidad de otros elementos que aporten la flexibilidad requerida por el sistema.
- Incrementos en los costos de instalación de nuevos recursos hidráulicos al considerar la infraestructura necesaria para el cumplimiento de la guía.

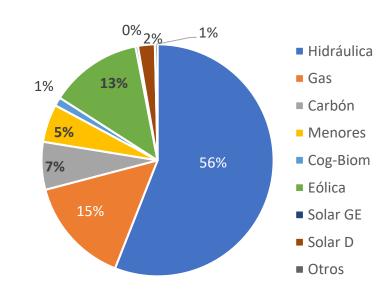
Otros riesgos identificados:

- Impactos de gran magnitud en el país asociado a racionamiento en el sector eléctrico.
- La restricciones planteadas al recurso primario hidráulico desincentiva el uso de esta tecnología como alternativa en la expansión de capacidad del sistema, limitando el gran potencial con el que actualmente se cuenta de este recurso que es considerado competitivo, limpio y renovable.
- La reducción de la flexibilidad del sistema, en el corto plazo limita y en el largo plazo incrementa los costos asociados a la integración de las Fuentes de Energía Renovable no Convencionales, dado que las mismas por su característica de generación intermitente requieren de esta flexibilidad para que soporten dicha intermitencia.
- Ante la señal de uso restringido del agua y la posible limitación a la integración de las Fuentes de Energía Renovable no Convencionales por la pérdida de flexibilidad del sistema, se da una señal a que la expansión sea realizada con recursos térmicos, lo que impacta directamente las emisiones de gases de efecto invernadero y el cumplimiento de metas asociada a estas emisiones.
- Para reducir los riesgos evidenciados, la atención de la demanda de energía eléctrica podría depender altamente de intercambios internacionales de los cuales no se cuenta con firmeza. A su vez, la aplicación de la guía convierte al sistema Colombiano como un país importador, limitando las posibles intercambios con mercados como el centro americano.
- Restricciones operativas de los embalses existentes los cuales no fueron diseñados para permitir el paso de caudales que no sean de rebose. A su vez existe la incapacidad de operar continuamente con caudales de rebose ya que se atenta contra la vida útil de los embalses.

Muchas Gracias



Escenarios Considerados


Escenario 2

Recurso	Base	Cargo por confiabilidad	Expansión adicional	Total [MW]
Hidráulica	10,963	1,200	1,566	13,729
Gas	3,509	0	57	3,566
Carbón	1,339	250	830	2,419
Menores	787	0	475	1,262
Cog-Biom	126	0	211	337
Eólica	18	0	1,231	1,249
Solar GE	0	0	449	449
Solar D	0	0	560	560
Otros	0	89	0	89
Total	16,742	1,539	5,378	23,659

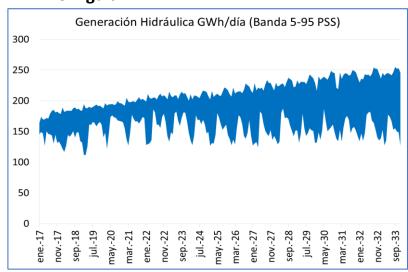
Costo alternativa = USD\$ 99,872 Millones

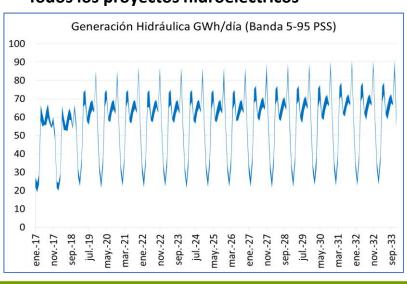
Escenario 3

Recurso	Base	Cargo por confiabilidad	Expansión adicional	Total [MW]
Hidráulica	10,963	1,200	1,200	13,363
Gas	3,509	0	57	3,566
Carbón	1,339	250	0	1,589
Menores	787	0	475	1,262
Cog-Biom	126	0	161	287
Eólica	18	0	3,058	3,076
Solar GE	0	0	82	82
Solar D	0	0	560	560
Otros	0	89	0	89
Total	16,742	1,539	5,592	23,873

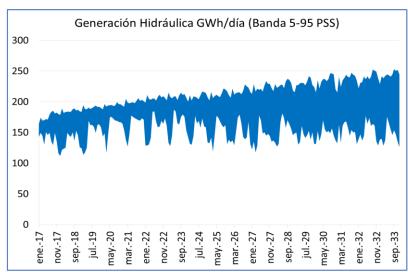
Costo alternativa = USD\$ 88,569 Millones

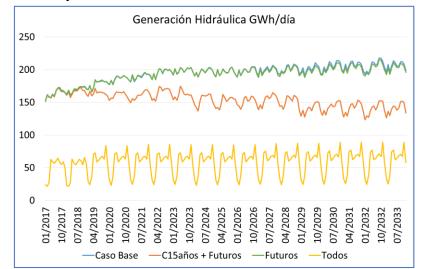
Resultados Escenario 2

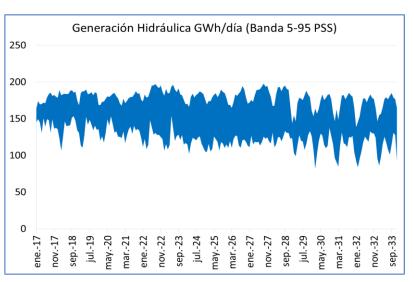



Resultados - Generación hidráulica

Xm

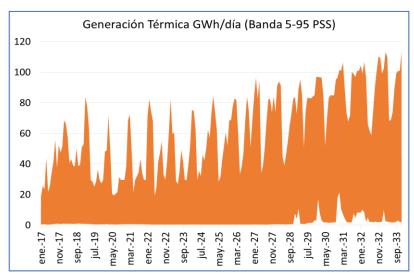

Sin guía

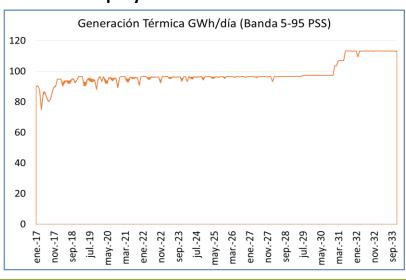

Todos los proyectos hidroeléctricos

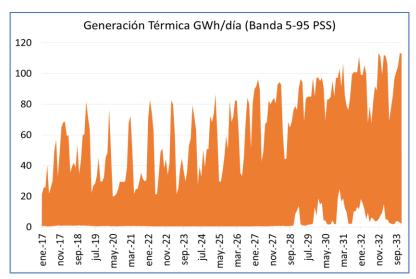

Proyectos futuros

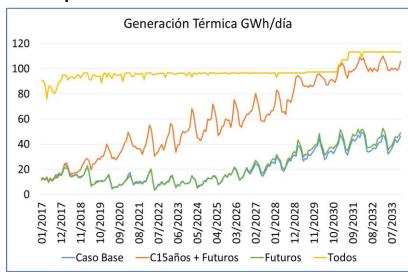
Comparación valores medios

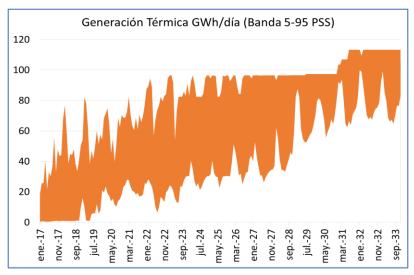
Proyectos futuros + Concesiones 15 años




Resultados - Generación Térmica


Sin guía


Todos los proyectos hidroeléctricos

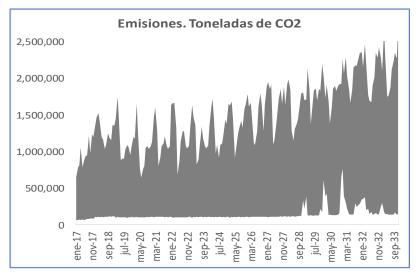

Proyectos futuros

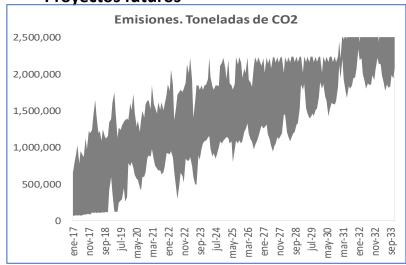
Comparación valores medios

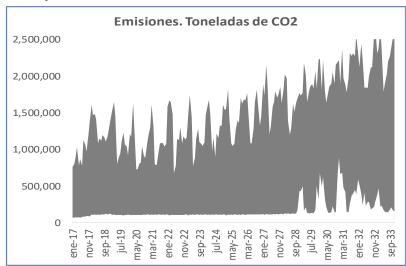
Proyectos futuros + Concesiones 15 años

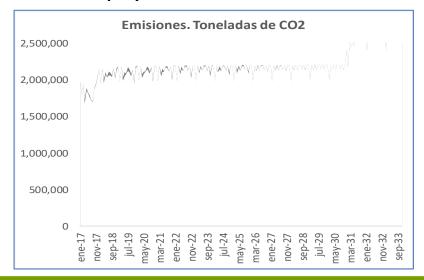
Bajo el escenario expansión térmica:

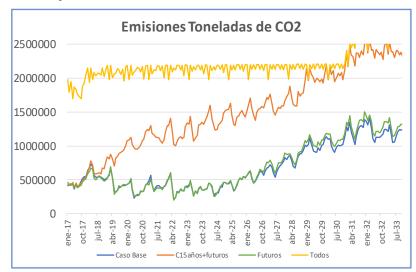
 Incremento adicional en gen térmica promedio (50% respecto al escenario expansión hidráulico de proyectos futuros)




Resultados - Emisiones

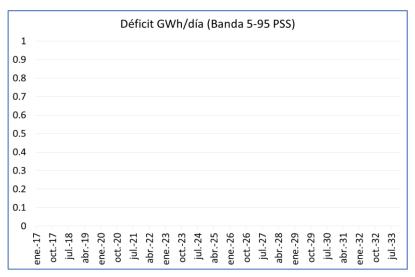

Sin guía

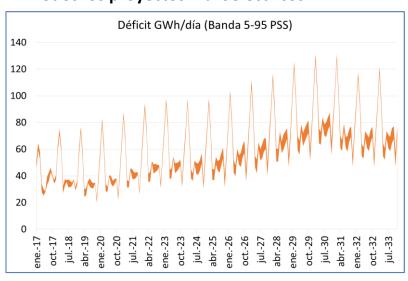

Proyectos futuros

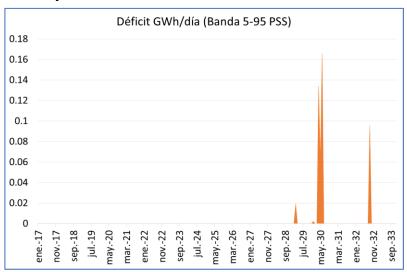


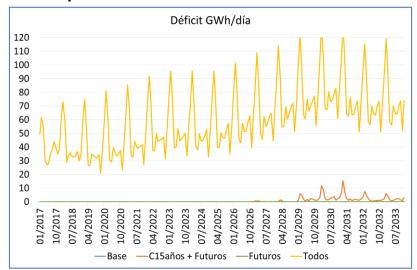
Proyectos futuros + Concesiones 15 años

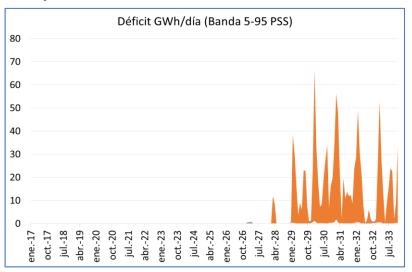
Todos los proyectos hidroeléctricos




Resultados - Déficit


Sin guía


Todos los proyectos hidroeléctricos

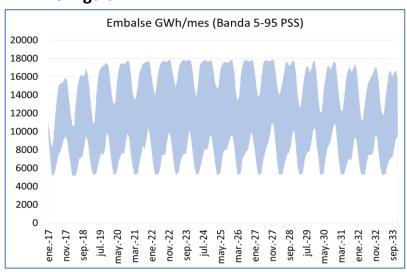

Proyectos futuros

Comparación valores medios

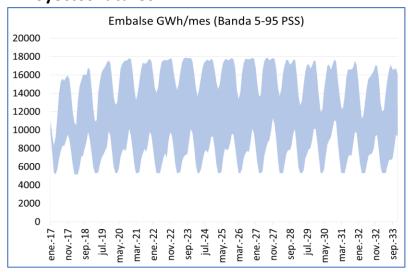
Proyectos futuros + Concesiones 15 años

Bajo el escenario expansión térmica:

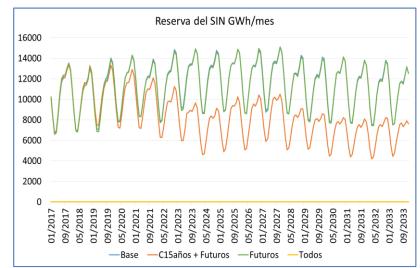
• Aumento del déficit respecto al escenario expansión hidráulico de proyectos futuros.



Resultados - Reserva del SIN



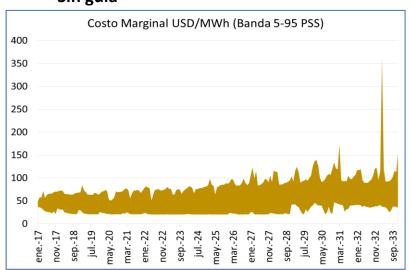
Sin guía

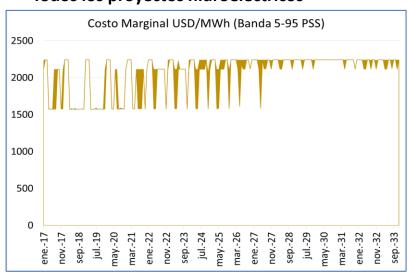


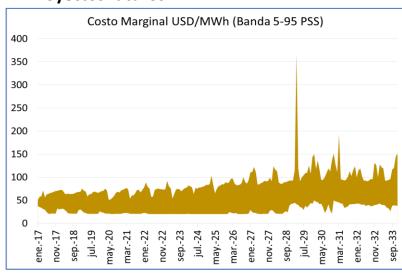

Proyectos futuros

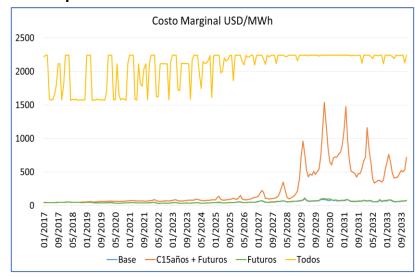
Comparación valores medios

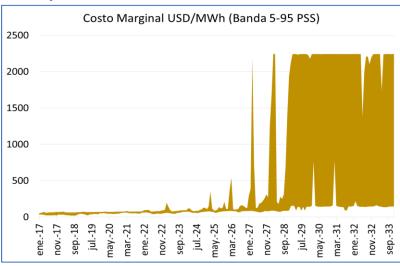
Proyectos futuros + Concesiones 15 años




Resultados - Costo Marginal


Sin guía

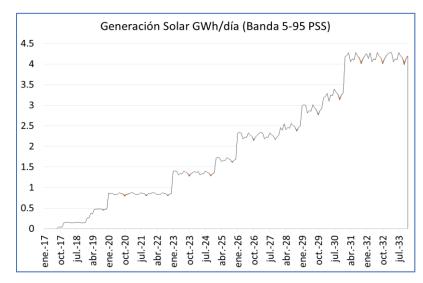

Todos los proyectos hidroeléctricos

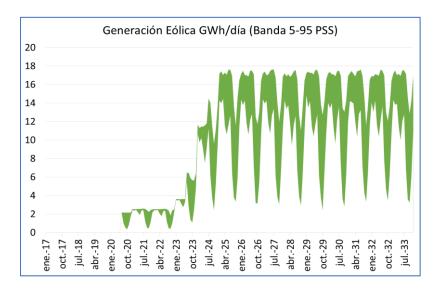

Proyectos futuros

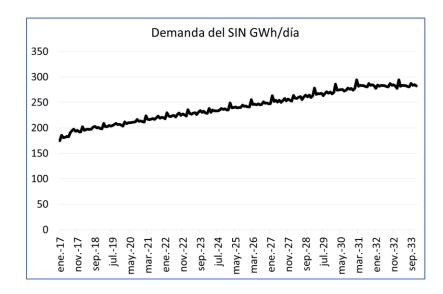
Comparación valores medios

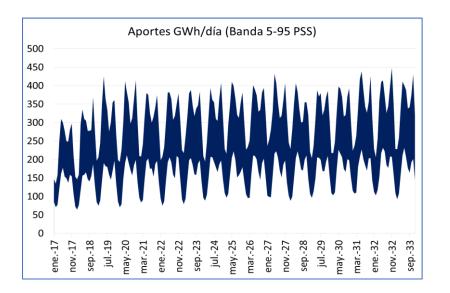
Proyectos futuros + Concesiones 15 años

Bajo el escenario expansión térmica:

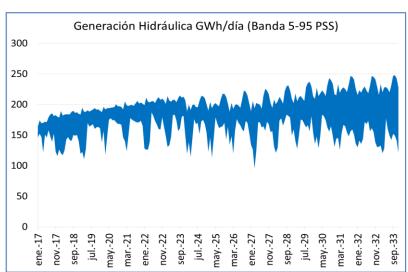

 Incremento adicional en los costos marginal promedio 15% respecto al escenario expansión hidráulico de proyectos futuros

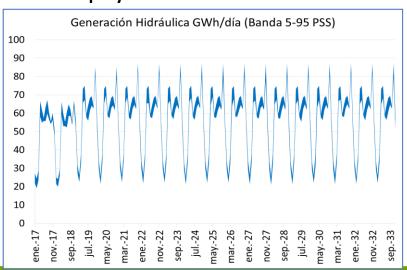


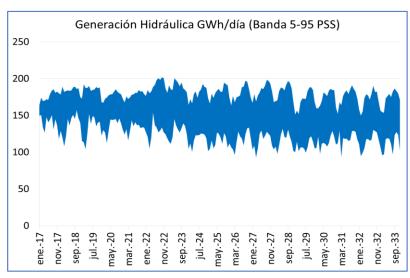


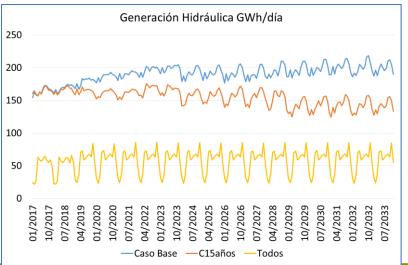

Aportes hídricos, Generación Solar, Eólica, Demanda

Resultados Escenario 3



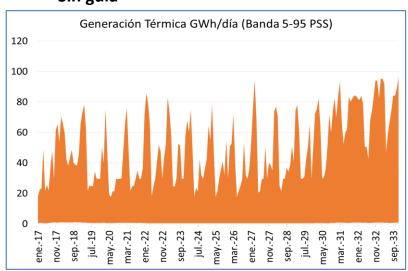

Resultados - Generación hidráulica

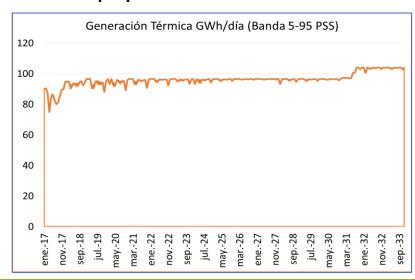

Sin guía

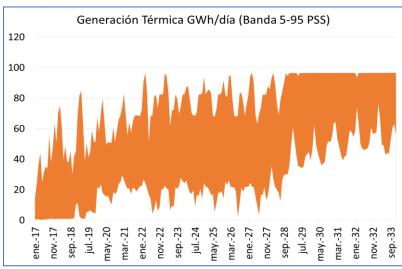


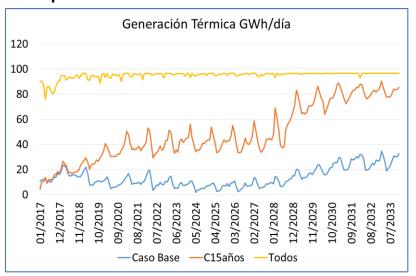
Todos los proyectos hidroeléctricos

Proyectos futuros + Concesiones 15 años



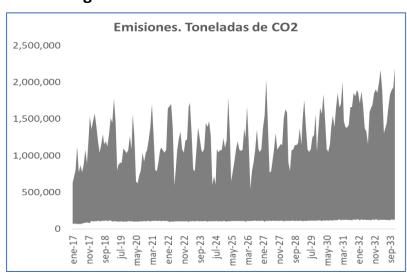

Resultados - Generación Térmica


Sin guía

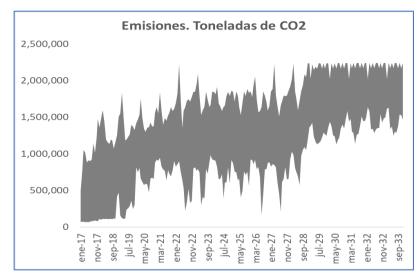


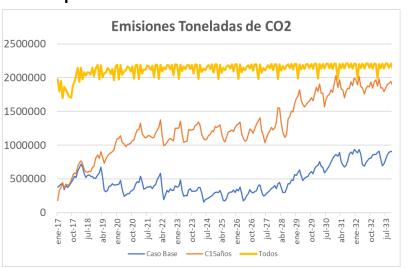
Todos los proyectos hidroeléctricos

Proyectos futuros + Concesiones 15 años



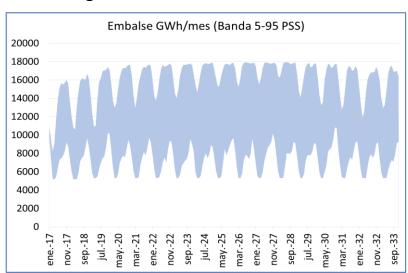

Resultados - Emisiones

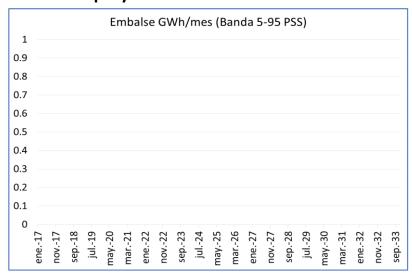

Sin guía

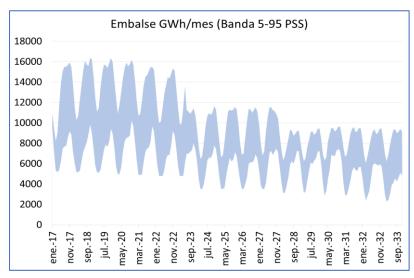


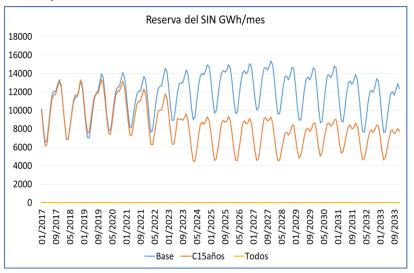
Todos los proyectos hidroeléctricos

Concesiones 15 años



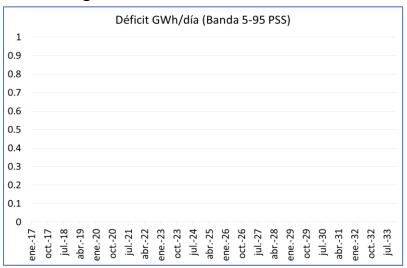

Resultados - Reserva del SIN

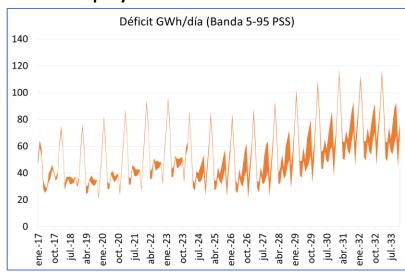

Sin guía

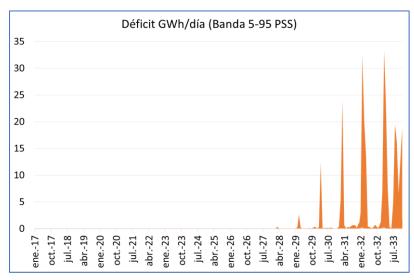


Todos los proyectos hidroeléctricos

Proyectos futuros + Concesiones 15 años

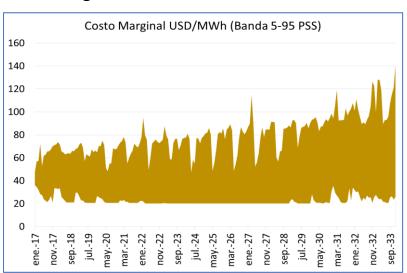


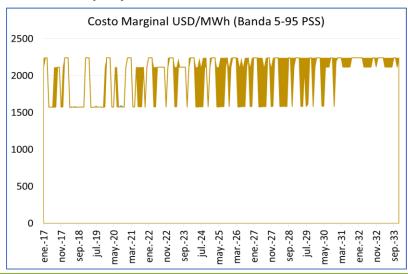

Resultados - Déficit

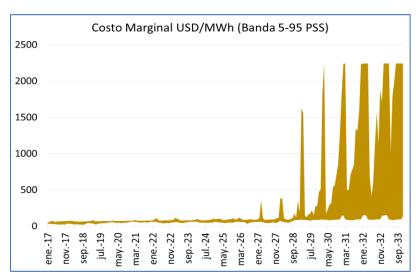

Sin guía

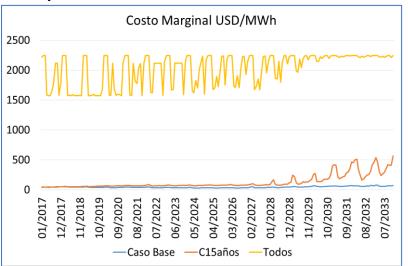
Todos los proyectos hidroeléctricos

Proyectos futuros + Concesiones 15 años



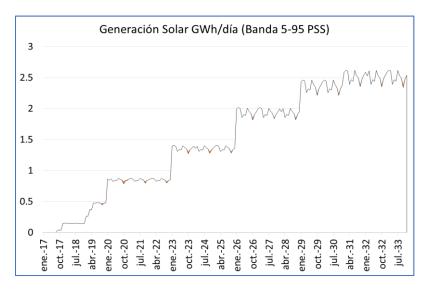

Resultados - Costo Marginal

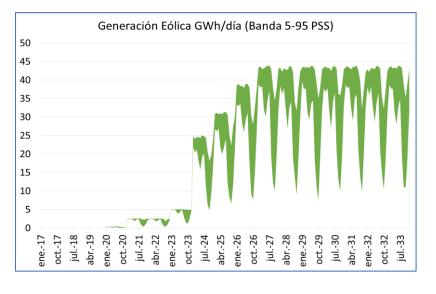

Sin guía

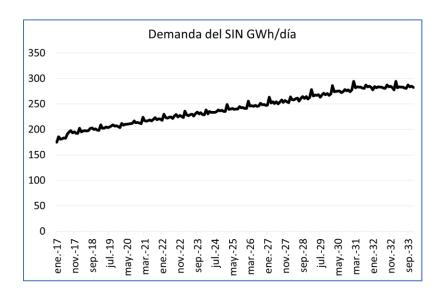


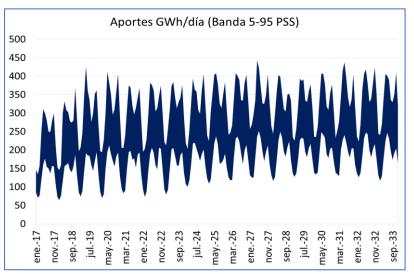
Todos los proyectos hidroeléctricos

Proyectos futuros + Concesiones 15 años

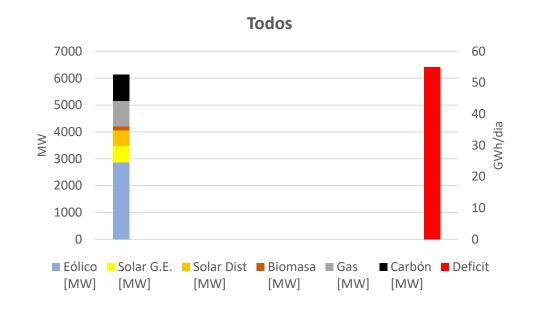







Aportes hídricos, Generación Solar, Eólica, Demanda





Expansión Requerida

