

Anexo 1

Procedimiento para el modelado de las curvas Volumen útil Vs. **Potencia**

- Los agentes reportaran seis (6) parejas de puntos (Volumen útil-Potencia disponible), incluyendo el 0% y 100% del volumen útil, como condición necesaria para modelar todo el rango de operación. Esto aplica a todos los embalses del sistema.
- 2. La curva se construirá uniendo las parejas de puntos a través de segmentos rectos (Ver figura 1), descritos por funciones del tipo $Pot=a_n*Vol\%+b_n$, siendo a_n (pendiente) y b_n (ordenada en el origen) los parámetros que caracterizan el segmento recto, calculados a partir de los puntos reportados por los agentes.
- 3. Las pendientes de los segmentos resultantes (a_n) deben ser decrecientes, o en su defecto permanecer constantes, conforme incrementa el volumen útil $(a_1>a_2>a_3)$, según figura 1). Si los puntos reportados no cumplen con dicha condición, se seguirá el siguiente procedimiento:
 - a. El CND notificará al agente para que se hagan las modificaciones que sean necesarias.
 - b. Si no se recibe respuesta por parte del agente, el SPO hará los supuestos que considere necesarios y se los presentará al agente, quien será el encargado de dar la aprobación final.

Potencia disp Principal condición a1>a2>a3 100% 0%

Figura 1: Modelado de las curvas

4. Los segmentos resultantes serán incluidos en el modelo de planeación mediante restricciones del tipo:

 $vPot_p \le a_n * vVol \%_{p-1} + b_n \quad \forall p, n$

Donde $vPot_p$ es la variable de decisión asociada con la potencia en el periodo p, $vVol\%_{p-1}$ es la variable que representa el volumen útil en el periodo y a_n y b_n , los parámetros de los segmentos rectos que representan la curva, calculados previamente.