

Empresa País Proyecto Descripción Mota Engil Colombia S.A.S. Colombia Parque Solar Planeta Rica Informe Acuerdo CNO 1223

CÓDIGO DE PROYECTO EE-2023-028 CÓDIGO DE INFORME EE-EN-2024-0188 REVISIÓN B

Este documento EE-EN-2024-0188-RB fue preparado para Mota Engil Colombia S.A.S. por el Grupo Estudios Eléctricos.

Para consultas técnicas respecto del contenido del presente comunicarse con:

Ing. Claudio Celman Sub-Gerente Dpto. Ensayos e Ingeniería claudio.celman@estudios-electricos.com

Ing. Andrés Capalbo Sub-Gerente Dpto. Ensayos e Ingeniería andres.capalbo@estudios-electricos.com

Ing. Pablo Rifrani Gerente Dpto. Ensayos e Ingeniería pablo.rifrani@estudios-electricos.com

Informe realizado en colaboración con todas las empresas del grupo: Estudios Eléctricos S.A., Estudios Eléctricos Colombia y Electrical Studies Corp.

Este documento contiene 15 páginas y ha sido guardado por última vez el 27/02/2024 por Claudio Celman; sus versiones y firmantes digitales se indican a continuación:

Revisión	Fecha	Comentarios	Realizó	Revisó	Aprobó
А	27.02.24	Para revisión	SS, GG	AdP	PR
В	27.02.24	Corrección según comentarios cliente	SS, GG	AdP	PR

Todas las firmas digitales pueden ser validadas y autentificadas a través de la web de Estudios Eléctricos; http://www.estudios-electricos.com/certificados.

ÍNDICE

1	Introducció	Introducción						
	1.1 Definio	iones						
2	Informaciói	n de la central	5					
3	Ensayos a ı	nivel planta	€					
	3.1 Prueba	as de verificación de modos de control	€					
	3.1.1	Pruebas control tensión sin estatismo	7					
	3.1.2	Pruebas control tensión con estatismo	8					
	3.1.3	Pruebas control potencia reactiva	٥					
	3.1.4	Pruebas control factor de potencia	10					
	3.2 Prueba	as de verificación de recepción de consignas	12					
	3.2.1	Recepción de consignas locales en modo control de tensión con estatismo	12					
	3.2.2	Recepción de consignas remotas en modo control de tensión con estatismo	12					
	3.2.3	Recepción de consignas locales en modo control de potencia reactiva	12					
	3.2.4	Recepción de consignas remotas en modo control de potencia reactiva	12					
	3.2.5	Recepción de consignas locales en modo control de factor de potencia	13					
	3.2.6	Recepción de consignas remotas en modo control de factor de potencia	13					
4	Conclusion	es	14					
5	Anexos		15					
	5.1 Rango	parametrizable de estatismo en tensión	15					

1 Introducción

El presente informe resume los principales hallazgos durante la realización de los ensayos los días 15 al 18 de febrero de 2024 en el Parque Solar Planeta Rica, de acuerdo con los requerimientos planteados por el acuerdo CNO 1223, para la verificación del control de tensión de las plantas eólicas y solares fotovoltaicas conectadas al STN y STR.

Se incluyen la totalidad de las pruebas realizadas, así como observaciones pertinentes a considerar, además de la respuesta del sistema ante el cambio en la referencia de los diferentes lazos de control de potencia reactiva tensión.

1.1 Definiciones

Término	Descripción
PELEC	Potencia eléctrica (activa)
QELEC	Potencia reactiva
ETERM	Tensión de terminales
FREC	Frecuencia
V	Tensión (Modo de control)
Q	Potencia reactiva (Modo de control)
FP	Factor de potencia (Modo de control)
POI	Punto de Interconexión

Tabla 1.1 – Tabla de nomenclaturas

- Tiempo de respuesta inicial (Tr): Tiempo que tarda la señal en alcanzar un ±3 % del delta de cambio esperado alrededor de su valor inicial, ante una entrada escalón.
- Tiempo de establecimiento (Te): Tiempo que tarda la señal en alcanzar y mantenerse dentro de una banda de ±3 % del delta de cambio esperado alrededor de su valor final, ante una entrada escalón.

Información de la central 7

El Parque Solar Planeta Rica, propiedad de Akuo Energy Colombia SAS y construido por Mota Engil Colombia S.A.S, se encuentra ubicado en el municipio de Planeta Rica departamento de Córdoba. Está constituido por seis (6) inversores, cada uno de los cuales pude entregar 3800 kVA. La potencia instalada total del parque es de 22.8 MW, totalizando así una potencia de 19.9 MW en la S/E Planeta Rica 110.

El parque está conectado a la S/E Planeta Rica 110 mediante un transformador con potencia nominal de 25 MVA y relación de transformación 110/34.5 kV, que a su vez se conecta al parque mediante una línea de 6.9 km a 34.5 kV.

Los datos de la central ensayada son los siguientes:

PF Planeta Rica

Potencia Pico	26.676	MWp
Potencia en el POI	19.9	MW
Mínimo técnico	0.7	MW
Rango	19.2	MW
Inversores	6 inversores POWER ELECTRONICS, referencia FRESUN HEMK – Modelo FS3670KH – Capacidad nominal 3800 kVA	-

Tabla 2.1 – Datos de la central

Ensayos a nivel planta

En esta sección se presentan los ensayos realizados con el objetivo de evaluar la respuesta dinámica de los elementos incorporados al control de tensión/potencia reactiva del parque.

3.1 Pruebas de verificación de modos de control

Los ensayos consistieron en pruebas dinámicas de respuesta al escalón a los distintos modos de control implementados por el control conjunto de planta.

Se realizaron escalones de acuerdo con la Tabla 3.1, tal como lo establece el acuerdo CNO 1223.

Modo de control	Número de escalones	Magnitud del escalón
Control de tensión sin estatismo	Un escalón descendente en Pmin y un escalón ascendente a la Pmax disponible durante la prueba (Debe ser igual o superior al 80 % de la potencia nominal de la planta)	±2 % del valor instantáneo
Control de tensión con estatismo	Un escalón descendente en Pmin y un escalón ascendente a la Pmax disponible durante la prueba (Debe ser igual o superior al 80 % de la potencia nominal de la planta) en un valor medio del rango configurable del estatismo. Se debe reportar un documento del fabricante que especifique el rango en el que se puede configurar el estatismo. En caso de que no esté disponible se debe realizar adicionalmente la prueba en el mínimo y el máximo valor configurable del estatismo. En las pruebas se debe verificar que se obtiene la respuesta esperada según el estatismo definido para ello se debe calcular la relación entre la potencia reactiva y la tensión.	±2 % del valor instantáneo
Control de potencia reactiva	Un escalón ascendente en Pmin y un escalón descendente a la Pmax disponible durante la prueba (Debe ser igual o superior al 80 % de la potencia nominal de la planta) en la región inductiva y un escalón descendente a Pmin y un escalón ascendente a Pmax disponible durante la prueba en la región capacitiva.	±2 % del valor instantáneo
Control de factor de potencia	Un escalón ascendente en Pmin y un escalón descendente a la Pmax disponible durante la prueba (Debe ser igual o superior al 80 % de la potencia nominal de la planta) en la región inductiva y un escalón descendente a Pmin y un escalón ascendente a Pmax disponible durante la prueba en la región capacitiva.	±2 % del valor instantáneo

Tabla 3.1 – Escalones realizados para la verificación de los modos de control

3.1.1 Pruebas control tensión sin estatismo

El día 17 de febrero de 2024 se realiza un escalón de tensión descendente con el parque despachado en potencia mínima y el día 18 de febrero de 2024 se realiza un escalón un escalón de tensión ascendente en potencia máxima disponible durante la prueba, con la planta operando en modo control de tensión sin estatismo. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_3_acuerdo1223_diligenciado.xlsx" en las hojas Reg_Mod. cont. tensión sin est., Tiempos resp cont. sin est. y Gráficas cont. tension sin. est.

Tal como se especifica en el acuerdo CNO 1223 el tiempo de respuesta inicial y de establecimiento es calculado teniendo en cuenta el registro de potencia reactiva medida en el punto de interconexión a partir del cambio de referencia de tensión; en la Tabla 3.2 se especifican los tiempos de respuesta y establecimiento obtenidos. Se toman los tiempos de mayor valor como definitivos por ser el caso crítico.

Control V (PI)

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Ascendente	2	16.5	No	0.8783	5.2253
Descendente	2	16.5	No	0.6616	5.2563
	Resumen tie	0.8783	5.2563		

Tabla 3.2 – Respuesta del control de tensión

3.1.2 Pruebas control tensión con estatismo

El día 17 de febrero de 2024 se realiza un escalón de tensión descendente con el parque despachado en potencia mínima y el día 18 de febrero de 2024 se realiza un escalón un escalón de tensión ascendente en potencia máxima disponible durante la prueba, con la planta operando en modo control de tensión con estatismo. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo *"anexo_3_acuerdo1223_diligenciado.xlsx"* en las hojas *Reg_Mod. cont. tensión con est., Tiempos resp cont. con est.* y *Gráficas cont. tensión con. est.*

Tal como se especifica en el acuerdo CNO 1223 el tiempo de respuesta inicial y de establecimiento es calculado teniendo en cuenta el registro de potencia reactiva medida en el punto de interconexión a partir del cambio de referencia de tensión; en la Tabla 3.3 se especifican los tiempos de respuesta y establecimiento obtenidos y en la Tabla 3.4 se especifica el estatismo calculado por cada escalón y el promedio. Se toman los tiempos de mayor valor como definitivos por ser el caso crítico.

Control tensión con estatismo Q(V)

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Ascendente	2	16.5	No	0.9232	5.2224
Descendente	2	16.5	No	0.2799	6.9977
	Resumen tie	0.9232	6.9977		

Tabla 3.3 – Respuesta del control de tensión con estatismo

Control tensión con estatismo O(V)

	** /		
Tipo de escalón	Ajuste estatismo [%]	Estatismo calculado [%]	
Ascendente	4.00	3.95	
Descendente 4.00		4.13	
Promedio	4.04		

Tabla 3.4 – Estatismo calculado

3.1.3 Pruebas control potencia reactiva

El día 16 de febrero de 2024 se realiza un escalón descendente de potencia reactiva en la región inductiva y un escalón ascendente de potencia reactiva en la región capacitiva con el parque despachado en potencia máxima disponible y operando en modo control de potencia reactiva. El día 17 de febrero de 2024 se realiza un escalón ascendente de potencia reactiva en la región inductiva y un escalón descendente en la región capacitiva con el parque despachado en potencia mínima y operando en modo control de potencia reactiva. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo" 3 acuerdo 1223 diligenciado.xlsx" en las hojas Reg_Mod. cont. pot. react., Tiempos resp_cont. pot. react. y Gráficas cont. pot. react.

Tal como se especifica en el acuerdo CNO 1223 el tiempo de respuesta inicial y de establecimiento es calculado teniendo en cuenta el registro de potencia reactiva medida en el punto de interconexión a partir del cambio de referencia potencia reactiva; en la Tabla 3.5 y en la Tabla 3.6 se especifican los tiempos de respuesta y establecimiento obtenidos para la región inductiva y capacitiva respectivamente. Se toman los tiempos de mayor valor como definitivos por ser el caso crítico.

Control potencia reactiva Q región inductiva

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Ascendente	2	16.5	No	0.0575	8.0727
Descendente	2	16.5	No	0.5058	8.9724
Resumen tiempos				0.5058	8.9724

Tabla 3.5 – Respuesta del control de potencia reactiva región inductiva

Control potencia reactiva Q región capacitiva

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Ascendente	2	16.5	No	0.2251	9.0889
Descendente	2	16.5	No	0.0559	8.9364
	Resumen tie	0.2251	9.0889		

Tabla 3.6 – Respuesta del control de potencia reactiva región capacitiva

3.1.4 Pruebas control factor de potencia

El día 16 de febrero de 2024 se realiza un escalón ascendente de factor de potencia en la región capacitiva y un escalón descendente de factor de potencia en la región inductiva con el parque despachado en potencia máxima disponible y operando en modo control de factor de potencia. El día 17 de febrero de 2024 se realiza un escalón ascendente de factor de potencia en la región inductiva y un escalón descendente en la región capacitiva con el parque despachado en potencia mínima y operando en modo control de factor de potencia. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo" 3 acuerdo 1223 diligenciado.xlsx" en las hojas Reg_Mod. cont. fp., Tiempos resp. cont. fp. y Gráficas cont. fp.

Tal como se especifica en el acuerdo CNO 1223 el tiempo de respuesta inicial y de establecimiento es calculado teniendo en cuenta el registro de potencia reactiva medida en el punto de interconexión a partir del cambio de referencia potencia reactiva; en la Tabla 3.7 y en la Tabla 3.8 se especifican los tiempos de respuesta y establecimiento obtenidos para la región inductiva y capacitiva respectivamente. Se toman los tiempos de mayor valor como definitivos por ser el caso crítico.

Control factor de potencia FP región inductiva

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Descendente	2	16.5	No	0.8141	6.8479
	Resumen tie	0.8141	6.8479		

Tabla 3.7 – Respuesta del control de potencia reactiva región inductiva

Control factor de potencia FP región capacitiva

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Ascendente	2	16.5	No	0.6891	9.9287
	Resumen tie	0.6891	9.9287		

Tabla 3.8 – Respuesta del control de factor de potencia región capacitiva

Debido a que un escalón del 2 % de FP realizado en carga baja representa un cambio pequeño en la potencia reactiva e inferior a la exactitud de medición del sistema de medida, no es posible ubicar la respuesta final dentro de una banda del 3 % del delta y medir claramente los tiempos de respuesta y de establecimiento, para medir estos tiempos se realizó un escalón de mayor tamaño. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_3_acuerdo1223_diligenciado.xlsx" en las hojas Reg_Mod. cont. fp.A., Tiempos resp. cont. fp.A. y Gráficas cont. fp.A. En la Tabla 3.9 se especifican los tiempos de respuesta y establecimiento obtenidos para la región inductiva con un escalón en la referencia de FP de 0.576 a 0.99 tanto en el lado capacitivo como inductivo.

Control factor de potencia FP región inductiva

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Ascendente	41.4	16.5	No	0.8505	8.9439
	Resumen tie	0.8505	8.9439		

Tabla 3.9 – Respuesta del control de potencia reactiva región inductiva escalón de -0.7 a -0.99

Control factor de potencia FP región inductiva

Tipo de escalón	Tamaño del escalón [%]	Pmax al inicio [MW]	Respuesta oscilatoria en Q	Tiempo de respuesta [s]	Tiempo de establecimiento [s]
Descendente	41.1	16.5	No	0.0857	9.2017
	Resumen tie	0.0857	9.2017		

Tabla 3.10 – Respuesta general del control de potencia reactiva región inductiva

3.2 Pruebas de verificación de recepción de consignas

3.2.1 Recepción de consignas locales en modo control de tensión con estatismo

El día 17 de febrero de 2024 se realizan escalones ascendentes y descendentes en la referencia del control de tensión con estatismo con el ánimo de verificar que la planta recibe y gestiona las consignas aplicadas de modo local. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_2_acuerdo1223_deligenciado.xlsx" en las hojas Reg_Consignas tensión_localy Gráficas Consignas tensión_L.

Cabe mencionar que la tensión no llega al valor de consigna debido a que el control de tensión con estatismo realiza un aporte fijo de potencia reactiva en función de la desviación en tensión con respecto a la tensión de referencia.

3.2.2 Recepción de consignas remotas en modo control de tensión con estatismo

El día 23 de febrero de 2024 se realizan escalones ascendentes y descendentes en la referencia del control de tensión con estatismo con el ánimo de verificar que la planta recibe y gestiona las consignas aplicadas de modo remoto. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_2_acuerdo1223_deligenciado.xlsx" en las hojas Reg_Consignas tensión_remota y Gráficas Consignas tensión_R.

Cabe mencionar que la tensión no llega al valor de consigna debido a que el control de tensión con estatismo realiza un aporte fijo de potencia reactiva en función de la desviación en tensión con respecto a la tensión de referencia.

3.2.3 Recepción de consignas locales en modo control de potencia reactiva

El día 17 de febrero de 2024 se realizan escalones ascendentes y descendentes en la referencia del control de potencia reactiva con el ánimo de verificar que la planta recibe y gestiona las consignas aplicadas de modo local. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_2_acuerdo1223_deligenciado.xlsx" en las hojas Reg_Consignas pot. reac_Ly Gráficas Consignas pot. reac_L.

3.2.4 Recepción de consignas remotas en modo control de potencia reactiva

El día 23 de febrero de 2024 se realizan escalones ascendentes y descendentes en la referencia del control de potencia reactiva con el ánimo de verificar que la planta recibe y gestiona las consignas aplicadas de modo remoto. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_2_acuerdo1223_deligenciado.xlsx" en las hojas Reg_Consignas pot. reac_Ry Gráficas Consignas pot. reac_R.

3.2.5 Recepción de consignas locales en modo control de factor de potencia

El día 17 de febrero de 2024 se realizan escalones ascendentes y descendentes en la referencia del control de factor de potencia con el ánimo de verificar que la planta recibe y gestiona las consignas aplicadas de modo local. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_2_acuerdo1223_deligenciado.xlsx" en las hojas Reg_Consignas de fp_L \u2214 Gráficas Consignas de fp_L.

3.2.6 Recepción de consignas remotas en modo control de factor de potencia

El día 23 de febrero de 2024 se realizan escalones ascendentes y descendentes en la referencia del control de factor de potencia con el ánimo de verificar que la planta recibe y gestiona las consignas aplicadas de modo remoto. La respuesta de la tensión, la potencia activa y la potencia reactiva se muestran en el documento anexo "anexo_2_acuerdo1223_deligenciado.xlsx" en las hojas Reg_Consignas de fp_Ry Gráficas Consignas de fp_R.

Conclusiones 4

- El control de tensión sin estatismo tiene un tiempo de respuesta aproximado de 0.87 s y un tiempo de establecimiento aproximado de 5.23 s.
- El control de tensión con estatismo tiene un tiempo de respuesta aproximado 0.92 s y un tiempo de establecimiento aproximado de 7.00 s.
- El control de potencia reactiva tiene un tiempo de respuesta aproximado de 0.51 s y un tiempo de establecimiento aproximado de 9.09 s.
- El control de fator de potencia tiene un tiempo de respuesta aproximado de 0.85 s y un tiempo de establecimiento aproximado de 9.93 s.
- El parque gestiona de manera adecuada la recepción de consignas de manera local y remota.

5 **Anexos**

Rango parametrizable de estatismo en tensión

En la Figura 5.1 se muestra los valores configurables para el estatismo y la banda muerta del modo control de tensión con estatismo, los valores mostrados son tomados del documento "PPC specifications.pdf".

> Voltage regulation: configurable ranges and deadbands (statism [2%-6%], deadband [minimum 0kV. maximum 10kV.])

Figura 5.1 - Rangos parametrizables de estatismo de tensión

El valor de banda muerta ajustado es de 0 kV y el valor de estatismo configurado es de 4%.