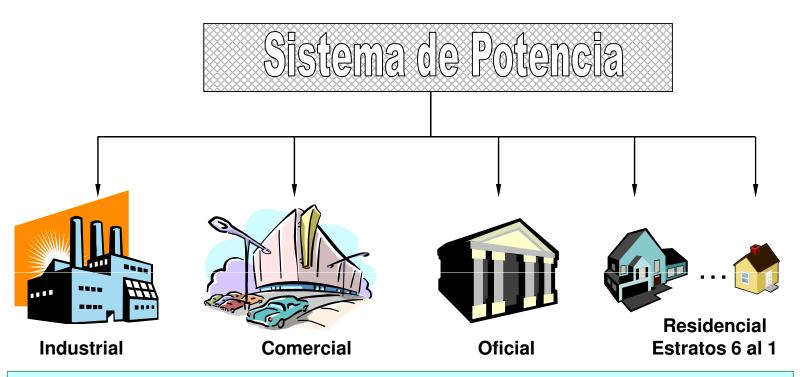


TALLER DE CONFIABILIDAD

Centro Nacional de Despacho septiembre de 2010

Objetivos

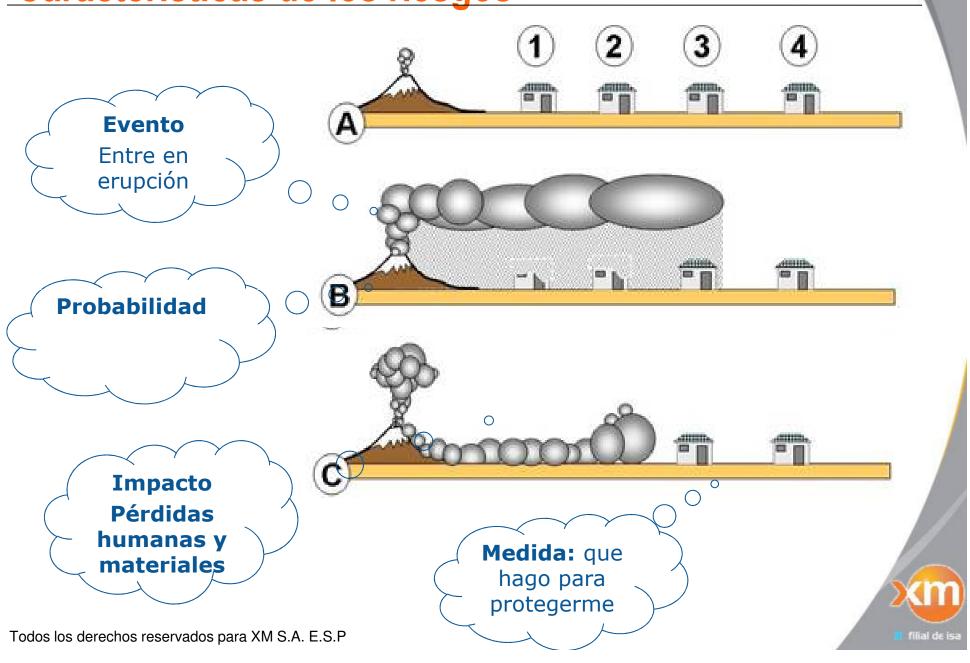
- Presentar la metodología de análisis de confiabilidad tradicional y la propuesta para estudios de planeación.
- Aplicar las metodologías tradicional y propuesta en una Red Piloto.
- Mostrar las potenciales mejoras que se pueden incluir en la metodología propuesta para maximizar los beneficios de todo el sector.



Contenido

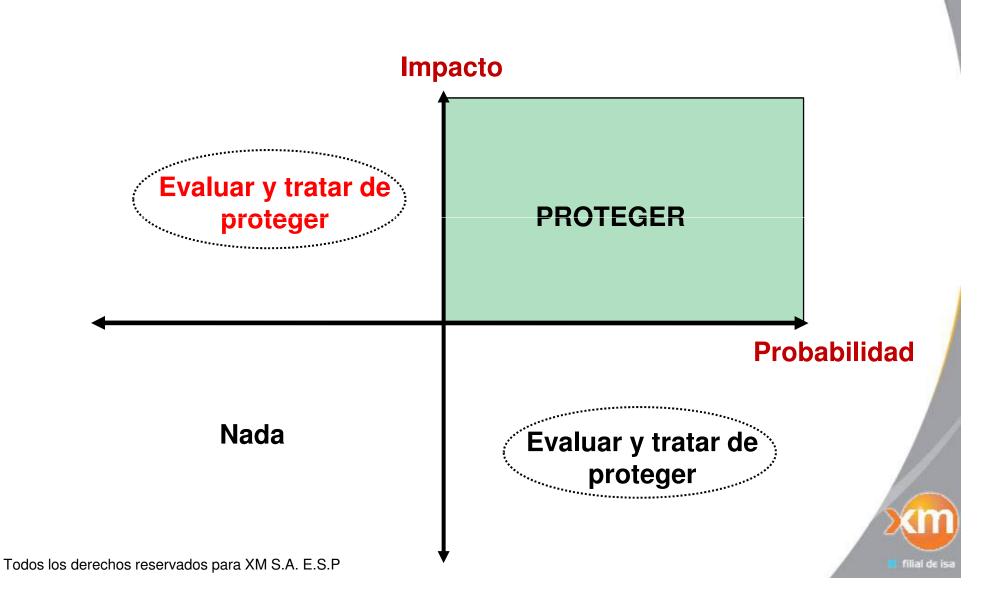
- Objetivo
- Fundamentación
- Aplicación metodología propuesta y tradicional
- •Propuesta para considerar nuevos factores para la valoración de confiabilidad
- Conclusiones y recomendaciones

Expectativas de Confiabilidad de la Demanda

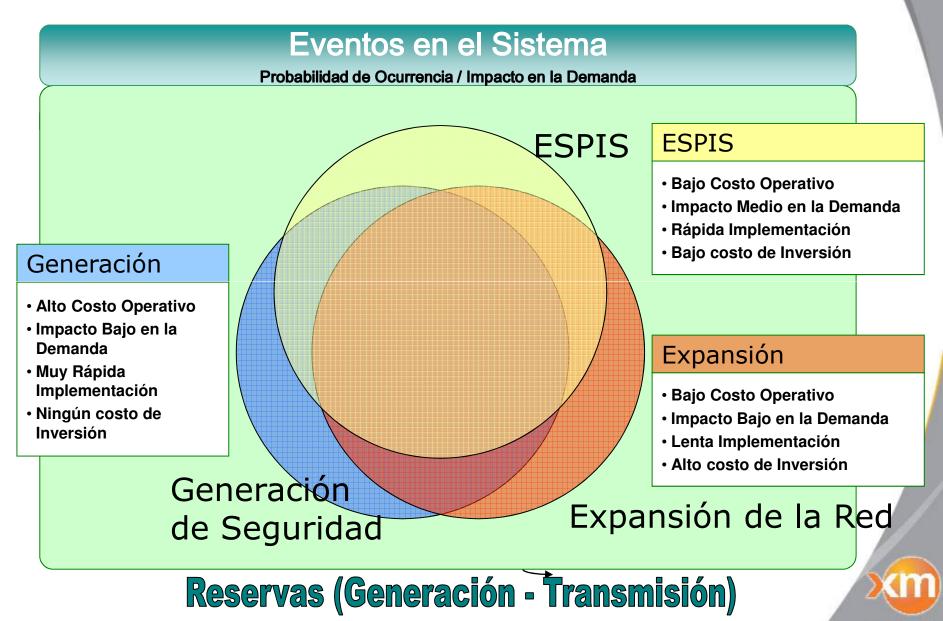

- •Diferentes expectativas de Confiabilidad
- •Disposición diferencial a pagar por el servicio

Una visión diferente de la Seguridad y la Confiabilidad

- Seguridad: Habilidad del Sistema para evitar Desconexiones de Carga No Controladas.
- <u>Confiabilidad</u>: Habilidad del Sistema para evitar Desconexiones de Carga Controladas. (Se puede escoger a quien y cuando se desconecta)



Características de los riesgos



Confiabilidad - Definiciones

Confiabilidad = (Probabilidad × Impacto)

La Confiabilidad del Sistema vs Las Alternativas Disponibles

Metodología tradicional evaluación de confiabilidad

Confiabilidad = (Probabilidad × Impacto)

PROBABILIDAD

Eventos

Número de veces que se produce un evento → Fallas en elementos STN y conexiones

IMPACTO

Carga deslastrada

Duración

Valoración (Costo MWh no atendido)

No considera eventos en cascada

-Costo de acuerdo a cantidad de carga deslastrada (Área)→Res CREG 025/95

ENS × Costo

Metodología tradicional de evaluación de confiabilidad

PROBABILIDAD:

Estadísticas de eventos: MIC: Metas – Índices-Compensaciones

COSTOS racionamiento programado:

Res CREG 025/95: Define los costos incrementales en que se incurre cuando se deja de atender una unidad de demanda

Costo CRO1: Es el costo económico marginal de racionar 1.5% de la demanda de energía del SIN. Tiene un rango de validez entre 0 y 1.5% de la demanda de energía respectiva.

Costo CRO2: Es el costo económico marginal de racionar 5% de la demanda de energía del SIN. Tiene un rango de validez entre 1.5 y 5% de la demanda de energía respectiva.

Costo CRO3: Es el costo económico marginal de racionar 90% de la demanda de energía del SIN. Tiene un rango de validez para racionamientos superiores al 5% de la demanda de energía respectiva.

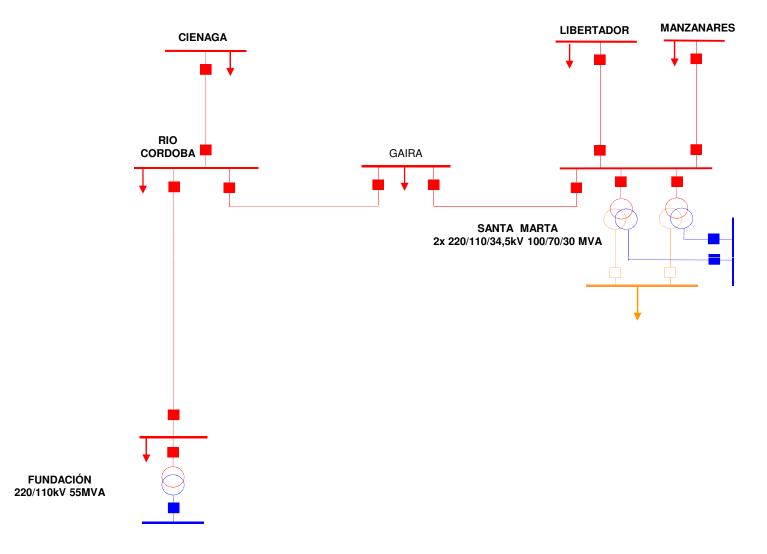
Costo CRO4: Es el costo económico marginal de racionar más del 90% de la demanda de energía del SIN.

Metodología propuesta para evaluación de confiabilidad

COSTOS Racionamiento programado

	соѕто	\$ / kWh
Umbral	CRO1	624,08
	CRO2	1.131,57
	CRO3	1.984,40
Segmento 4	CRO4	3.929,58
	CRO1 (Estrato 4)	481,75

Fuente UPME septiembre de 2010


DURACIÓN EVENTO→MIC

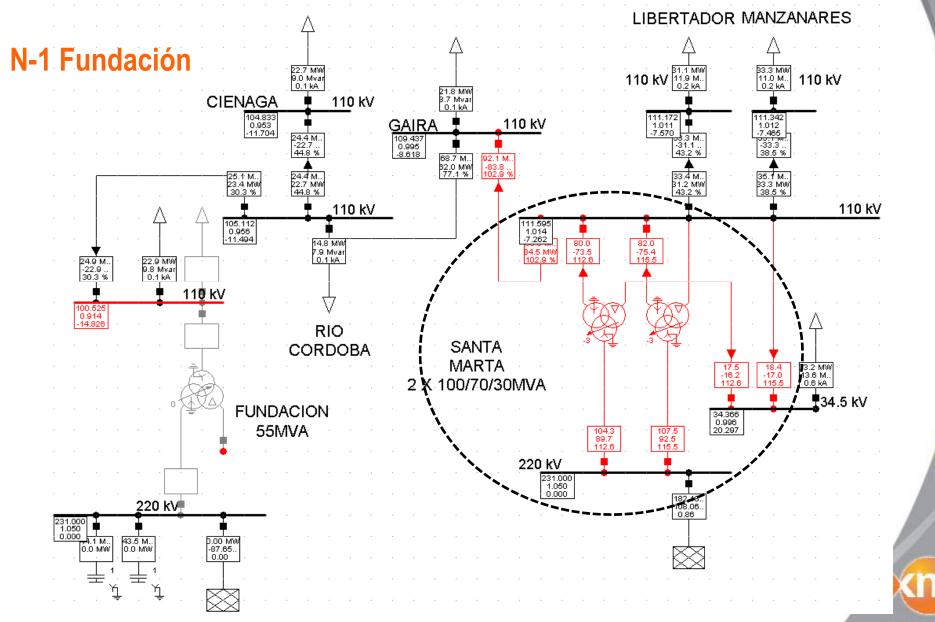
EVALUACIÓN CONFIABILIDAD CASO BASE

Red Piloto

Información Red Piloto

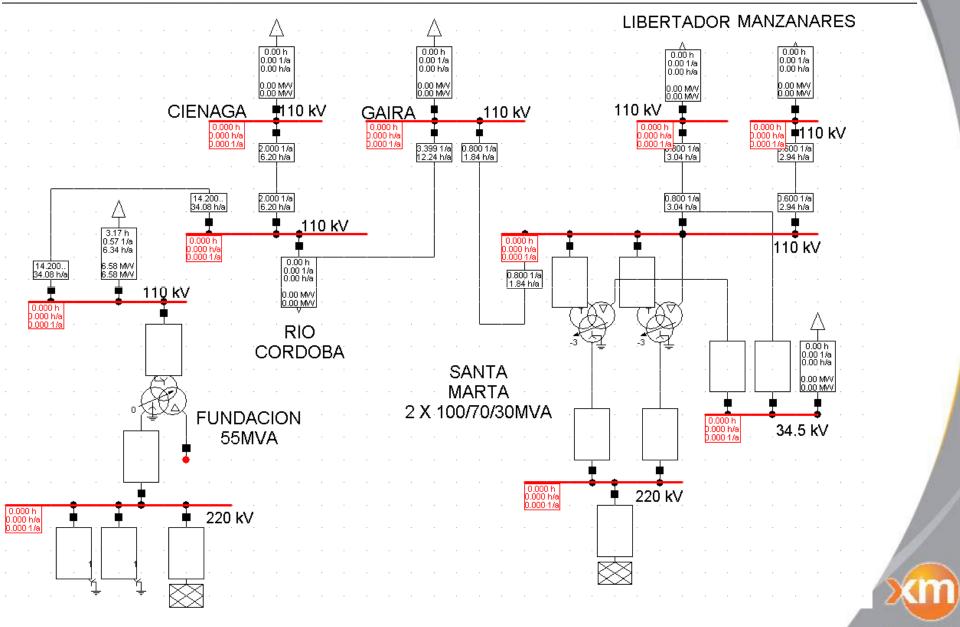
	Falla Per	manente	Falla Transitoria							
Componente	Tasa de fallo	Tiempo de reparación	Tasa de fallo	Tiempo de reparación						
	(falla/año)	r(h)	(falla/año)	r(h)						
TRANSFORMADORES DE POTÉNCIA DE CONEXIÓN AL STN										
TR-FUN01 – 55MVA	0,03	480	2	3,17						
TR-SMT01 – 100MVA	0,03	480	3	1,38						
TR-SMT02 – 100MVA	0,03	480	1,38							
	LÍNEAS A 110KV									
GAIRA-RIO CORDOBA			3,4	3,6						
RIO CORDOBA –CIENAGA			2	3,1						
RIO CORDOBA –FUNDACIÓN			14,2	2,4						
SANTA MARTA –GAIRA			0,8	2,3						
SANTA MARTA-LIBERTADOR			0,8	3,8						
SANTA MARTA-MANZANARES			0,6	4,9						

Supuestos del estudio

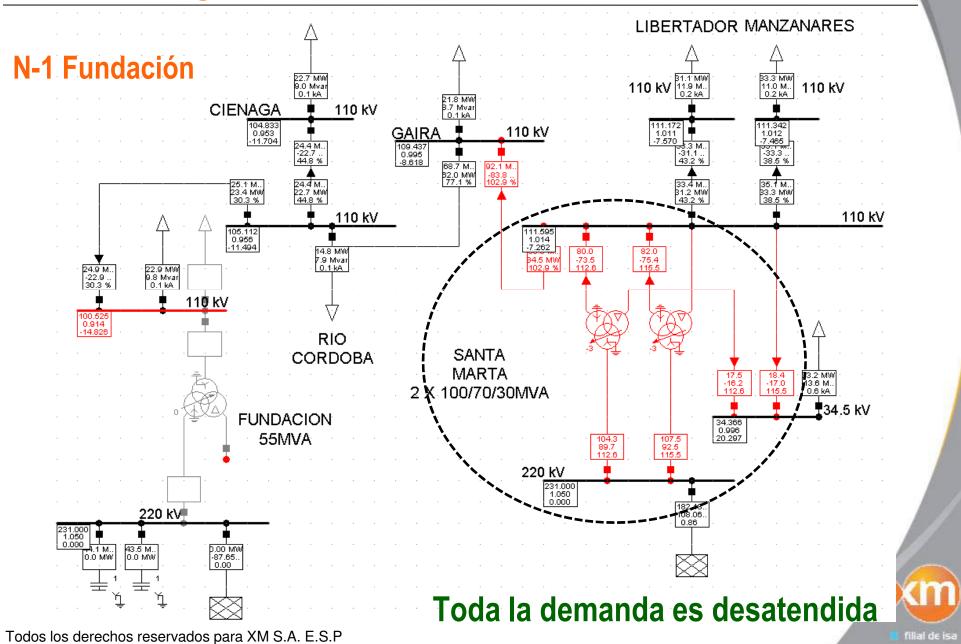

Escenario de máxima demanda (2/12/2009, 20:00 horas)

Cier	naga	Funda	ción	Ga	ira	Liber	tador	Manza	nares	es Rio Cordoba		Santa Marta 34.5kV		Total
Р	Q	Р	Q	Р	Q	Р	Q	Р	Q	Р	Q	Р	Q	Р
22.1	8.9	23.1	9.6	23.7	10.4	32.0	11.8	29.7	11.7	13.75	6.10	33.0	13.5	177.3

P(MW), Q(MVAr)


 Costo de racionamiento es calculado considerando el porcentaje de la demanda deslastrada del área

Aplicación metodología tradicional Red Piloto


filial d∈ is

Aplicación metodología tradicional Red Piloto

filial d∈ is

Metodología propuesta

Comparación metodología propuesta con tradicional

$$ENS_k = \lambda_k \times C_k \times D_k \times prob_{peak}$$

$$prob_{peak} = 3/24 = 0.125$$
 Probabilidad de demanda en punta

Evento k TR-FUN01 – 55MVA	Tasa de fallo (falla/año) λ_k	Tiempo de reparación $r(h)$ D_k	Carga deslastrada (MW) C_k	ENS Total (MWh/a)	Costo Total (millones \$)
Metod propuesta	2	3,17	177,3	140,51	CRO4: \$ 552.146 [CRO1: \$ 87.690]
Metod tradicional	2	3,17	6,58	5,21	CRO2: \$ 5.901

Señal no evidencia la realidad

Resultados Análisis confiabilidad Red piloto

				Metodología propuesta Metodología tradicional							
Elemento	Tasa de fallo (falla/año)	Tiempo de reparación r(h)	% Duración	Carga deslastrada	ENS (MWh/año)	Valoración confiabilidad (millones \$)	Carga Deslastrada (MW)	ENS (MWh/año)	Valoración confiabilidad (millones \$)	Diferencia costos (millones \$)	
TR-FUN01 – 55MVA	2	3.17	0.125	177.3	140.5	\$ 552,1	6.58	5.21465	\$ 20,491	\$ 531.65	
TR-SMT01 – 100MVA	3	1.38	0.125	177.3	91.7	\$ 360,5	4.554	2.356695	\$ 9,260	\$ 351.29	
TR-SMT02 – 100MVA	3	1.38	0.125	177.3	91.7	\$ 360,5	4.4011	2.27756925	\$ 8,950	\$ 351.60	
GAIRA-RIO CORDOBA	3.4	3.6	0.125	177.3	271.3	\$ 1065	7.4142	11.343726	\$ 44,576	\$ 1,021.40	
RIO CORDOBA -CIENAGA	2	3.1	0.125	22.1	17.1	\$ 67,3	22.1	17.1275	\$ 67,304	\$ 0	
RIO CORDOBA -FUNDACIÓN	14.2	2.4	0.125	0	0	\$ 0	0	0	0	\$ 0	
SANTA MARTA -GAIRA	0.8	2.3	0.125	177.3	40.8	\$ 160,2	35.18	8.0914	\$ 31,796	\$ 128.45	
SANTA MARTA- LIBERTADOR	0.8	3.8	0.125	32	12.2	\$ 47,8	32	12.16	\$ 47,784	\$ 0	
SANTA MARTA- MANZANARES	0.6	4.9	0.125	29.7	10.9	\$ 42,9	29.7	10.91475	\$ 42,890	\$ 0	
					Total	\$ 2657			\$ 273,051	\$ 2,384.39	

La metodología tradicional no da señales que apunten a mejorar la confiabilidad del sistema: No considera eventos en cascada.

Nuevas perspectivas para la metodología propuesta

Probabilidad de ocurrencia de eventos:

- Aleatoria sin importar la causa
- •Fallas permanentes en circuitos

IMPACTO

Costos:

- Duración
- •Frecuencia
- Umbrales: probabilidad, impacto
- Diferenciales por áreas
- •Componente social estratégico → Riesgos intangibles. asonadas, inseguridad, Potencialidades de desarrollo

Nuevas perspectivas para la metodología

Costos:

•Tipo de carga (Valoración económica y social). Racionamiento no programado:

Residencial:

Pérdida de alimentos, daño de equipos eléctricos, pérdida de información en PCs, aumento de inseguridad por pérdida de alarmas y/o iluminación interior y exterior.

Comercial: Reducción de ventas,

Inseguridad, jorn laboral.

Industrial:

Pérdidas de producción, Pérdidas de materias primas, Daños de equipos.

Conclusiones y recomendaciones

Las metodologías clásicas para análisis de confiabilidad no son suficientes:

- •Es necesario considerar los eventos en cascada que muestran la realidad del impacto de los eventos
- •Es necesario valorar elementos sociales y de estrategia del sector: potencialidades de desarrollo, riesgos intangibles: asonadas, inseguridad.
- •Se requiere considerar la naturaleza aleatoria de los eventos y valorar los costos: teniendo en cuenta racionamiento no programado, frecuencia y duración de los eventos. Es necesario incorporar costos diferenciales en función de áreas y del tipo de demanda.

MUCHAS GRACIAS

