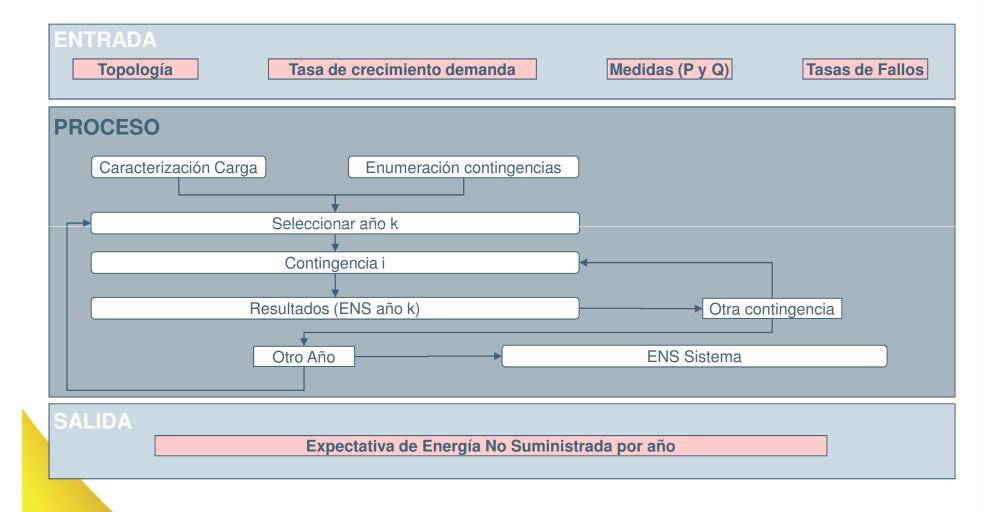
gasNatural UNION FENOSA

- 1. OBJETIVOS
- 2. METODOLOGÍA
- 3. EJEMPLO DE APLICACIÓN
- 4. CONCLUSIONES

- 1. OBJETIVOS
- 2. METODOLOGÍA
- 3. EJEMPLO DE APLICACIÓN
- 4. CONCLUSIONES

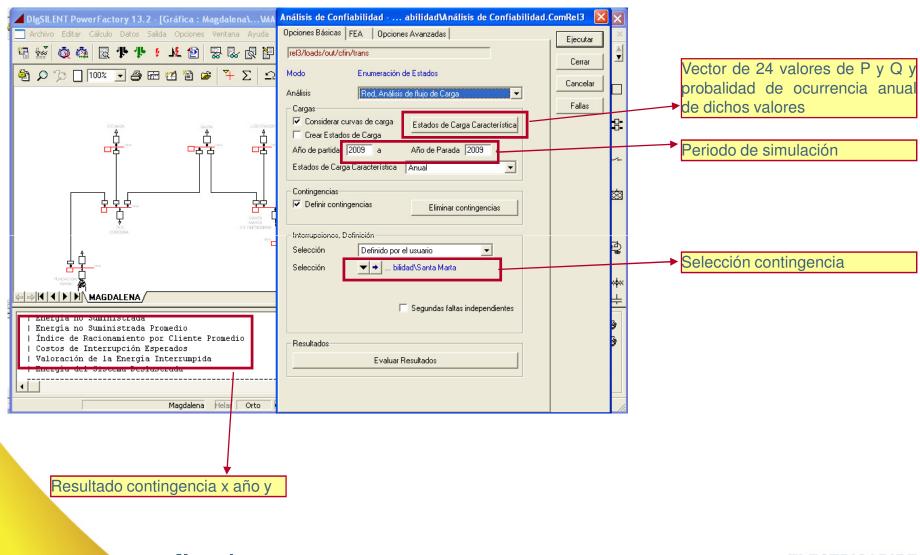
OBJETIVOS

- Presentar la metodología y herramientas utilizadas por Electricaribe para la evaluación de confiabilidad de una red eléctrica
- Realizar la evaluación de confiabilidad de una red piloto

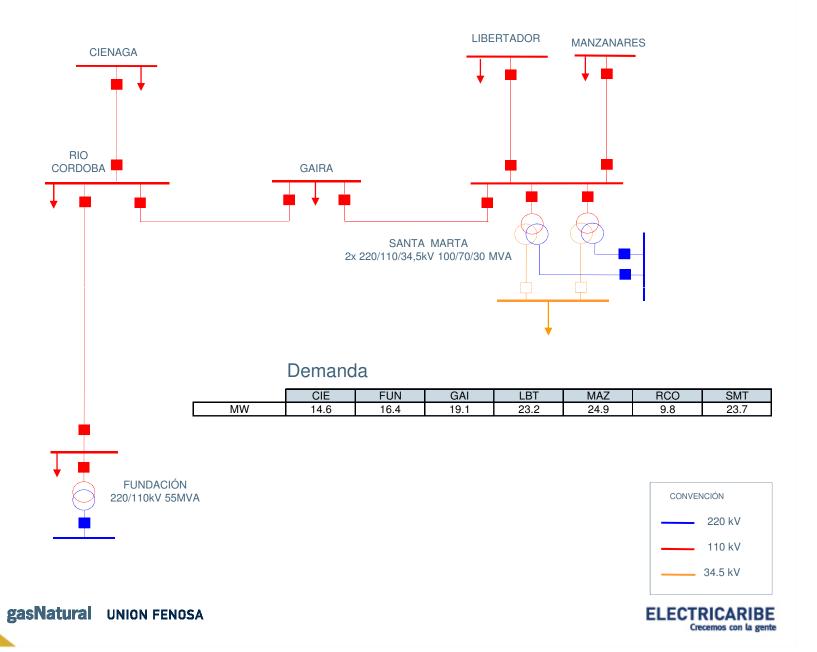


- 1. OBJETIVOS
- 2. METODOLOGÍA
- 3. EJEMPLO DE APLICACIÓN
- 4. CONCLUSIONES

METODOLOGÍA


PROCESO

METODOLOGÍA


HERRAMIENTAS

- 1. OBJETIVOS
- 2. METODOLOGÍA
- 3. EJEMPLO DE APLICACIÓN
- 4. CONCLUSIONES

9

INDICES DE CONFIABILIDAD

TRANSFORMADORES DE POTENCIA DE CONEXIÓN AL STN							
	Falla I	Permanente	Falla Transitoria				
Componente	Tasa de fallo	Tiempo de reparación	Tasa de fallo	Tiempo de reparación			
	(falla/año)	r(h)	(falla/año)	r(h)			
TR-FUN01 – 55MVA	0.03	480	2	3.17			
TR-SMT01 – 100MVA	0.03	480	3	1.38			
TR-SMT02 - 100MVA	0.03	480	3	1.38			
LÍNEAS A 110KV							
	Falla I	Permanente	Falla Transitoria				
Componente	Tasa de fallo	Tiempo de reparación	Tasa de fallo	Tiempo de reparación			
	(falla/año)	r(h)	(falla/año)	r(h)			
GAIRA-RIO CORDOBA			3.4	3.6			
RIO CORDOBA – CIENAGA			2	3.1			
RIO CORDOBA – FUNDACIÓN			14.2	2.4			
SANTA MARTA – GAIRA			0.8	2.3			
SANTA MARTA-LIBERTADOR			0.8	3.8			
JANTA WANTA-LIDENTADON							

RESULTADOS

Evaluación de la Confiabilidad Falla Transitoria años 2009 - 2014 en MWH/año

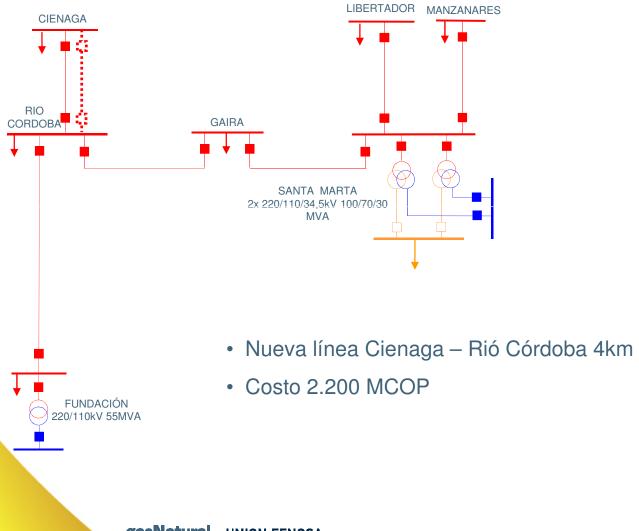
Componente	λ (f/a)	r (h)	2009	2010	2011	2012	2013	2014
GAIRA-RIO CORDOBA	3.4	3.6	7.6	11.3	15.1	18.8	25	30.8
RIO CORDOBA -CIENAGA	2	3.1	98.2	101	103	105	108	111
RIO CORDOBA -FUNDACIÓN	14.2	2.4	0	0	0	0	0	0
SANTA MARTA -GAIRA	0.8	2.3	31.3	34.7	38	41	44.6	48
SANTA MARTA-LIBERTADOR	0.8	3.8	76	77.9	79.6	81.3	83.4	85.7
SANTA MARTA-MANZANARES	0.6	4.9	46.9	48	49.1	50.2	51.5	52.9
TR-FUN01 – 55MVA	2	3.17	1.5	4.7	9.2	13.6	19.5	26.9
TR-SMT01 – 100MVA	3	1.38	59.6	97.3	140	184	243	260
TR-SMT02 – 100MVA	3	1.38	59.6	97.3	140	184	243	260

Costo de la confiabilidad de fallas transitorias en MCOP

	Costo de la comiabilidad de lanas transitorias en MCOP								
	Componente	λ (f/a)	r (h)	2009	2010	2011	2012	2013	2014
	GAIRA-RIO CORDOBA	3.4	3.6	4.6	6.8	9.1	11.3	15.0	18.5
	RIO CORDOBA -CIENAGA	2	3.1	58.9	60.4	61.7	63.0	64.6	66.4
	RIO CORDOBA -FUNDACIÓN	14.2	2.4	0.0	0.0	0.0	0.0	0.0	0.0
	SANTA MARTA -GAIRA	0.8	2.3	18.8	20.8	22.8	24.6	26.7	28.8
	SANTA MARTA-LIBERTADOR	0.8	3.8	45.6	46.7	47.8	48.8	50.0	51.4
	SANTA MARTA-MANZANARES	0.6	4.9	28.1	28.8	29.5	30.1	30.9	31.7
	TR-FUN01 – 55MVA	2	3.17	0.9	2.8	5.5	8.2	11.7	16.1
	TR-SMT01 – 100MVA	3	1.38	35.7	58.4	83.8	110.5	146.1	156.2
]	TR-SMT02 - 100MVA	3	1.38	35.7	58.4	83.8	110.5	146.1	156.2

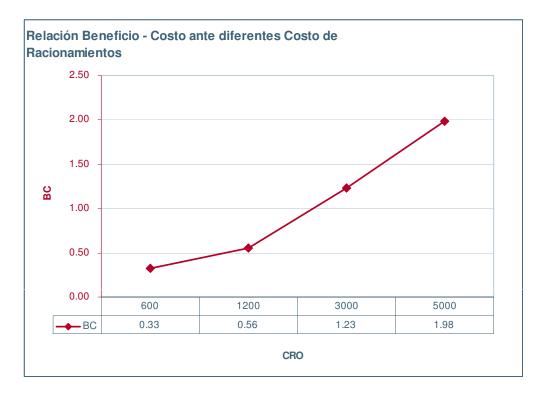
Evaluación de la Confiabilidad Falla Permanente años 2009 - 2014 en MWH/año

Componente	λ (f/a)	r (h)	2009	2010	2011	2012	2013	2014
TR-FUN01 – 55MVA	0.03	480	3.3	10.6	20.9	30.9	44.3	61.1
TR-SMT01 – 100MVA	0.03	480	207	339	486	641	847	906
TR-SMT02 – 100MVA	0.03	480	207	339	486	641	847	906


Costo de la confiabilidad de fallas permanentes en MCOP

	Componente	λ (f/a)	r (h)	2009	2010	2011	2012	2013	2014
	TR-FUN01 – 55MVA	0.03	480	2.0	6.4	12.5	18.5	26.6	36.7
	TR-SMT01 – 100MVA	0.03	480	124.3	203.1	291.6	384.4	508.1	543.4
]	TR-SMT02 – 100MVA	0.03	480	124.3	203.1	291.6	384.4	508.1	543.4

Costo de ENS valorado a 600 \$/KWh


ANALISIS SOLUCIÓN

ANALISIS SOLUCIÓN

Criterios

- Evaluación económica a 25 años
- Costo de inversión 2.200 MCOP
- Costos de mantenimiento 2% de la inversión
- Beneficios cuantificados como el impacto de la energía no suministrada
- Diferentes escenarios de costo de racionamientos

			Costo ENS MCOP						
Año	ENS (MWh)	CRO 600 \$/KWh	CRO 1200 \$/KWh	CRO 3000 \$/KWh	CRO 5000 \$/KWh				
2009	98	59	118	295	491				
2010	101	60	121	302	503				
2011	103	62	123	308	514				
2012	105	63	126	315	525				
2013	108	65	129	323	539				
2014	111	66	133	332	554				

- 1. OBJETIVOS
- 2. METODOLOGÍA
- 3. EJEMPLO DE APLICACIÓN
- 4. CONCLUSIONES

CONCLUSIONES

- El modulo de confiabilidad del software de simulación de sistemas de potencia Digsilent determina la cantidad de energía no suministrada en una red eléctrica dada una tasa de fallo y un tiempo de reposición, de una manera acertada acorde al algoritmo utilizado.
- Existe una ambigüedad en la regulación Eléctrica Colombiana con relación al costo incremental de racionamiento definido en el Código de Operación que hace parte de la resolución CRE 025-1995, donde explícitamente se define que el CRO se calcula como el porcentaje que representa la Energía No Suministrada con relación a la energía del SIN. Aquí radica la disparidad de resultados que pueden tener los agentes.

Escalón	Rango
CRO1	0.0% - 1.5%
CRO2	1.5% - 5.0%
CRO3	> 5%

CONCLUSIONES

- Cuanto cuesta eliminar 100% la posibilidad de presentarse ENS, estamos dispuestos como usuarios a pagar ese costo, que pasa cuando la falla no se debe a los equipos como líneas y trafos, si no, a un fallo de las protecciones O un rayo que provocan la salida de una barra?.
- La UPME debiera realizar un estudio del impacto que tendría el cumplir con los requerimientos de Calidad del STR, los cuales no parece que tuvieron un análisis previo. La expansión de la red debe cumplir el principio de eficiencia económica definida en la ley eléctrica Colombiana.
- Desde el punto de vista de los Operadores de las empresas eléctricas y debido al estado en que se recibieron algunas empresas (Pérdidas y agotamiento de las redes) y la complejidad geográfica, es posible que el monto de las inversiones sobrepase la capacidad de inversión.
- El esquema de Calidad debiera ser diferenciado, no es lo mismo hablar de una zona concentrada como Bogotá, Medellín o Calí a una zona como la Región Caribe donde las longitudes adquieren importancia.

