

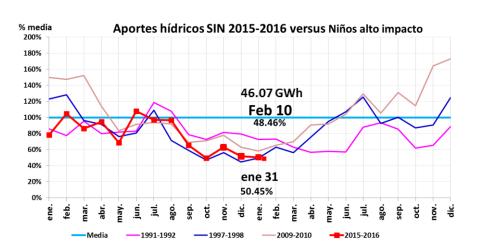
Dirigido a CNO

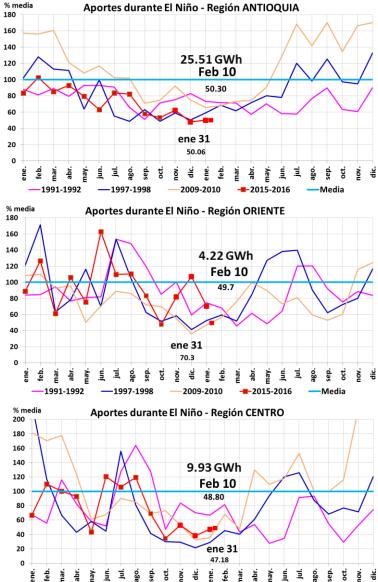
Jueves 11 de febrero de 2016

Informe de la operación real y esperada del Sistema Interconectado Nacional y de los riesgos para atender confiablemente la demanda

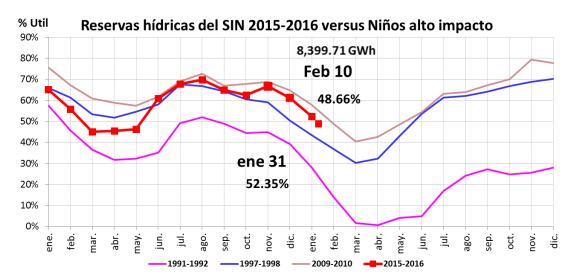
Dirigido al Consejo Nacional de Operación como encargado de acordar los aspectos técnicos para garantizar que la operación integrada del Sistema Interconectado Nacional sea segura, confiable y económica, y ser el órgano ejecutor del reglamento de operación

Reunión extraordinaria
Centro Nacional de Despacho - CND
Jueves 11 de febrero de 2016

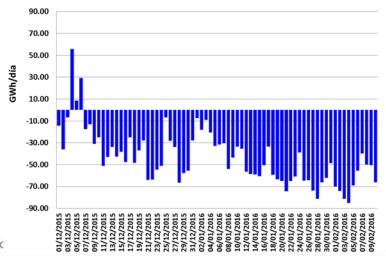


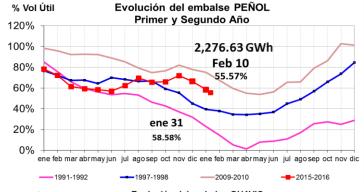


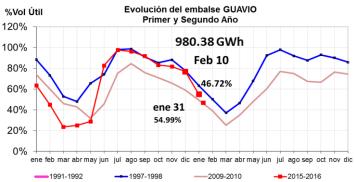
Evolución aportes versus Niños

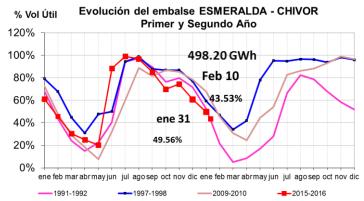

2009-2010

---2015-2016

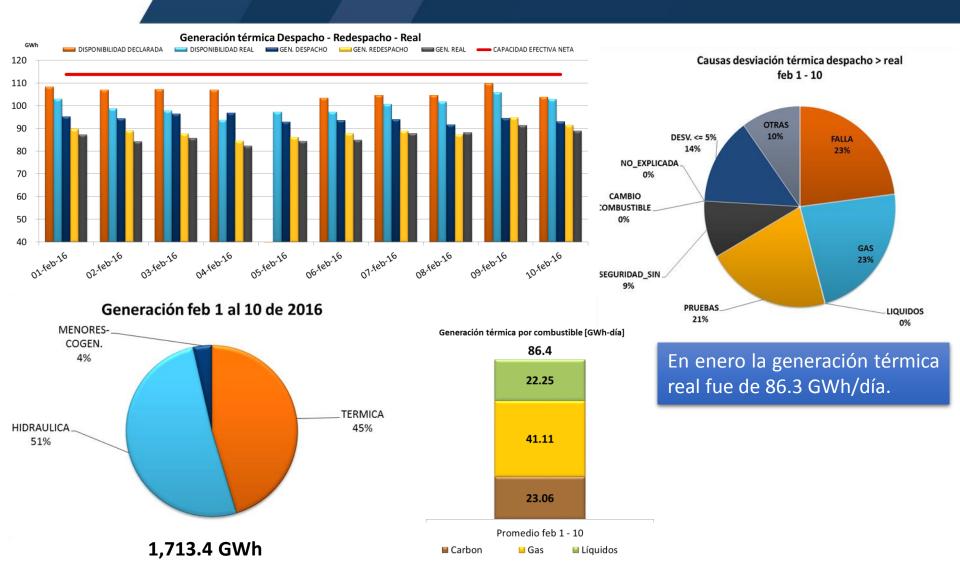

Media




Evolución embalses

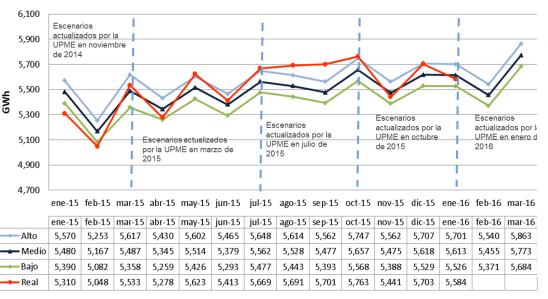


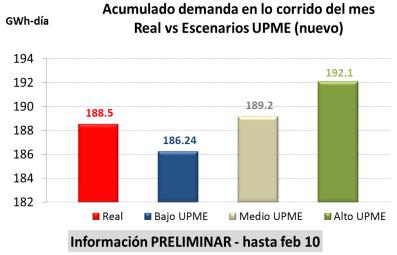
Seguimiento a la tasa de embalsamiento



Generación y disponibilidad térmica

(*) Capacidad efectiva neta: La mayor de las CEN asociada a los combustibles con que se respalda la ENFICC o en su defecto la mayor CEN de los combustibles principales.


Detalle desviaciones (Despacho > Gen Real)


Feb 1 – 10

									_	
PLANTA 🔻	DESV. <= 5%		FALLA	GAS	OTRAS	PRUEBAS	SEGURIDAD SIN	Total general GWh	GEN. DESPACHO	GEN. REAL
BARRANQUILLA 3	0	.24	0.20					0.44	11.69	11.25
BARRANQUILLA 4	0	.21			-	0.09		0.30	10.50	10.24
CARTAGENA 1	0	.40			-		0.11	0.51	9.31	9.72
CARTAGENA 2	0	.30			-		0.01	0.32	8.66	9.38
CARTAGENA 3	0	.47	0.27		-	0.23		0.96	10.45	9.56
CIMARRON	0	.13						0.13	4.69	4.56
FLORES 1	0	.89					0.49	1.38	35.85	34.47
FLORES 4B	0	.71	12.11		3.52		6.79	23.13	97.30	74.17
GECELCA 3	0	.11						0.11	39.36	39.25
GUAJIRA 1					-	1.55		1.55	3.48	7.62
GUAJIRA 2	0	.03	1.06		3.48			4.58	18.92	18.31
MERILECTRICA 1	0	.99						0.99	39.08	38.26
PAIPA 1	0	.19	0.47		-	0.09		0.75	1.20	0.45
PAIPA 2	0	.36	0.87					1.23	17.28	16.05
PAIPA 3	0	.11	2.67		-	0.44		3.22	13.64	10.42
PAIPA 4		-						-	36.96	37.17
PROELECTRICA 1			0.24		0.58			0.82	10.80	9.98
PROELECTRICA 2		- 1			0.02			0.02	10.80	10.88
TASAJERO 1								-	39.12	39.26
TASAJERO 2		-			-	15.38		15.38	34.56	19.85
TEBSAB	1	.60		20.99			1.00	23.59	183.70	160.11
TERMOCANDELARIA 1					-			-	0.68	0.69
TERMOCANDELARIA 2					0.25			0.25	0.66	0.41
TERMOCENTRO CC	1	.50			1.36			2.86	62.24	60.09
TERMODORADA 1					-	0.06		0.06	0.14	0.08
TERMOEMCALI 1	0	.51	0.51					1.01	50.00	49.66
TERMOSIERRAB	2	.10						2.10	90.71	88.68
TERMOVALLE 1	1	.25				1.56		2.81	47.28	44.47
TERMOYOPAL 2		.08						0.08	7.13	7.05
ZIPAEMG 2	0	.06	0.45					0.51	7.88	7.37
ZIPAEMG 3		.27	0.13					0.40	15.12	14.72
ZIPAEMG 4		.12	1.66		-			1.78	8.28	6.50
ZIPAEMG 5		.41	0.59					0.99	15.12	14.13
Total general GWh	13	.05	21.22	20.99	9.21	19.40	8.41	92.28	942.57	864.80

Demanda

Enero de 2016 creció frente a enero de 2015 en un 5.7% (En enero de 2015 la demanda creció 3.0%).

En lo corrido de febrero la demanda promedio día es de 188.5 GWh-día, y se ubica entre el escenario bajo y el medio de la UPME, con un crecimiento del 5.0% con respecto al mismo mes del año anterior.

Análisis energético mediano plazo

Información básica de las simulaciones

Demanda Nacional

Colombia: Escenario Alto hasta abril, luego escenario medio (Rev. Enero 2016)

Precios de combustibles

Precios UPME (Mayo de 2015 – Publicados Enero de 2016) + Gas OCG a 11.28 US\$/MBTU

Fecha entrada proyectos de generación

Gecelca 3.2: 21 de octubre de 2016

Parque térmico (Info Agentes)

Guajira 1. Disponible 30% hasta Abr30/16 Tebsa. Disponible 591 MW hasta Feb29/16 Flores IV. Disponible 430MW Hasta Nov/16

14 GWh/día

Desbalance hídrico

Combustible

Contratos de gas y líquidos disponibles para todo el horizonte

Plantas menores y cogeneradores

Diciembre a Abril 4.7** GWh/día, y de Mayo a Noviembre 6.2* GWh/día.

*Promedio móvil de generación real de los últimos 7 días

** 75% de la generación real de los últimos 7 días

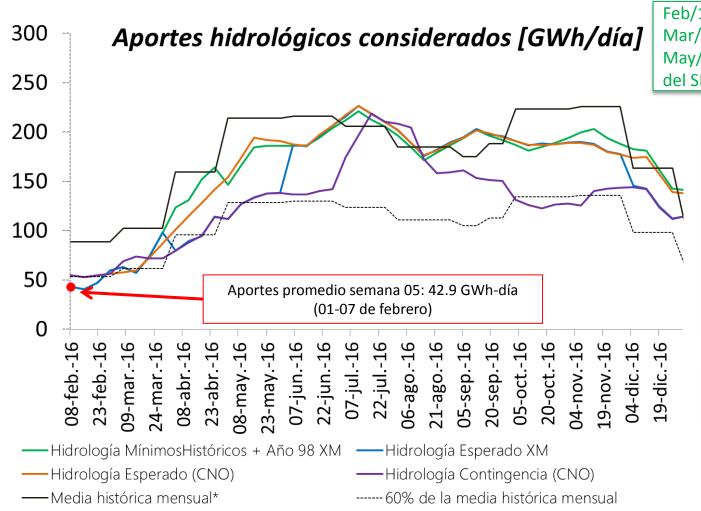
Embalses

Se utiliza el NEP para cada embalse

Parámetros

Heat Rate Térmicas: valores reportados incrementados en 15%. IHF reportados para el cálculo de la ENFICC (Unidades térmicas) IH e ICP calculados para las plantas hidráulicas

Costos de racionamiento


Último Umbral publicado en febrero de 2016 por la UPME

Todos los derechos reservados para XM S.A. E.S.P.

Supuestos y aportes hídricos

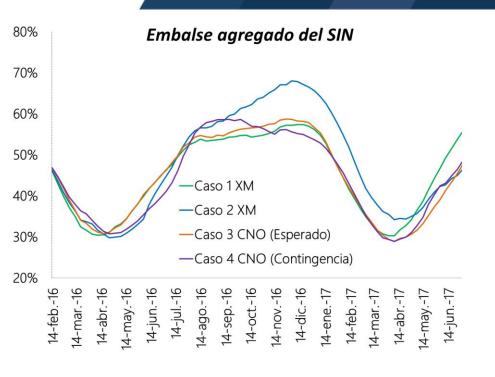
Caso 1 XM

Feb/16 (Mínimos Históricos) + Mar/16-Abr/16 (hidrología año 98) + May/16 en adelante (caso esperado del SH – Actualización Dic/15)

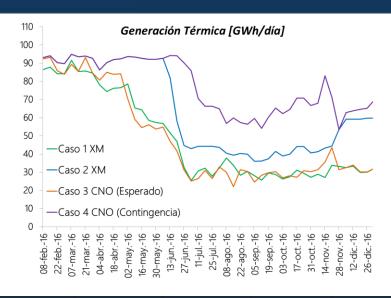
Caso 2 XM

Hidrología Esperado XM: Feb/16 (Mínimos Históricos) + Mar/16 (hidrología año 98) + Abr/16 - May/16 (caso contingencia* (SH)) + Jun/16-Nov/16 (caso esperado del (SH)*) + Dic/16 en adelante (Hidrología año 92-93)

Caso 3 CNO


Hidrología Esperado* (SH) del CNO.

Caso 4 CNO


Hidrología Contingencia* (SH) del CNO.

Resultados de las simulaciones

Evolución del embalse %				
	Nivel	20/11/2016		
	mínimo	30/11/2016		
Caso 1 XM	30.5%	57.3%		
Caso 2 XM	29.9%	67.1%		
Caso 3 CNO (Esperado)	30.8%	58.8%		
Caso 4 CNO (Contingencia)	30.8%	56.2%		

Caso 1 XM hasta abril/16	Caso 2 XM hasta junio/16	Caso 3 CNO hasta mayo/16	Caso 4 CNO hasta julio/16
86	93	90	93
87	93	88	93
78	91	84	91
	93	60	93
	81		93
			76
84	90	81	90
	86 87 78	Caso 1 XM hasta abril/16 86 93 87 93 78 91 93 81	Caso 1 XM hasta abril/16 hasta junio/16 hasta mayo/16 86 93 90 87 93 88 78 91 84 93 60 81

Conclusiones

De presentarse condiciones deficitarias en aportes similares a las consideradas, con supuestos de demanda entregados por la UPME, la disponibilidad de generación hidráulica y térmica reportada y demás información suministrada por los agentes, los resultados de las simulaciones indican que:

Los indicadores de confiabilidad cumplen con los criterios establecidos en el Código de Operación

Se requiere mantener los promedios de generación térmica indicados, por encima de los 90GWh/día, en un periodo que puede extenderse hasta junio/julio de 2016

El SIN cuenta con los recursos necesarios para afrontar una hidrología deficitaria siempre y cuando se disponga para la operación real de al menos la energía firme comprometida por parte de cada uno de los generadores del sistema.

La persistencia de los niveles de bajos aportes durante el segundo trimestre de 2016 y/o desviaciones considerables de los pronósticos de demanda y/o desviaciones de generación térmica, conllevarían consigo requerimientos de generación térmica más elevados y/o prolongados.

Recomendaciones

Recomendación	Dirigido a
Maximizar la disponibilidad del parque térmico para mantener los niveles de generación térmica real promedio semanal por encima de 90 GWh/día, situación que se puede extender hasta junio de 2016. Para alcanzar estos niveles de térmica, se requiere de todo el parque térmico instalado.	Agentes CNO CACSSE
Gestionar la máxima disponibilidad de Gas para el sector térmico que permitan alcanzar los valores de térmica requeridos para mantener la confiabilidad del SIN.	MME
Adelantar campañas de ahorro y uso eficiente de la energía, con el fin de crear conciencia en los usuarios para evitar el derroche.	MME
Garantizar la <u>calidad de las mediciones de aportes y nivel de embalses</u> , parámetros de plantas (factor de conversión, heat rate, cantidades contratadas de suministro de combustibles), derrateos por nivel de embalse y las variables requeridas para la planeación operativa energética, teniendo como objetivo una operación segura, confiable y económica-	Agentes CNO CACSSE
Teniendo en cuenta la magnitud y efecto en la planeación, se requiere revisar la información de los desbalances energéticos de los embalses del SIN.	Agentes CNO
Hacer seguimiento a la entrada oportuna de la planta de Regasificación para afrontar el verano 2016-2017.	MME

Índices Resolución CREG 026 de 2014

Evaluación 05 de febrero

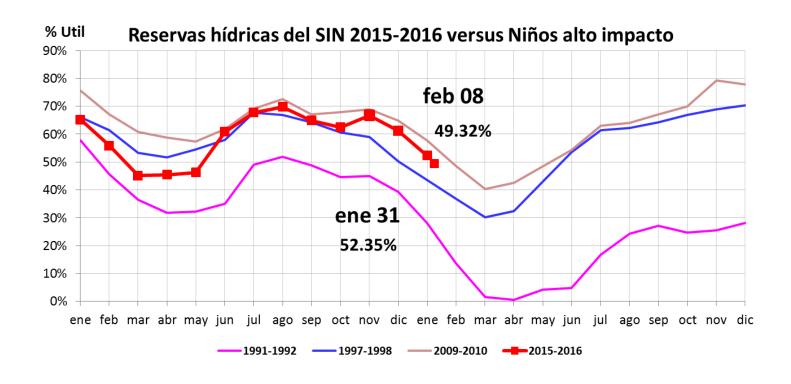
Reporte General para el día 2016-02-05

Índice de Energía Disponible

Fecha	Energía Disponible (kWh)	Demanda (kWh)	Índice ED
2016-02-01	209,927,023.86	188,120,081.38	
2016-03-01	209,943,180.86	186,235,997.00	
2016-04-01	215,858,481.86	187,955,778.23	
2016-05-01	216,650,153.86	187,763,641.87	
2016-06-01	215,794,576.86	189,470,336.97	
2016-07-01	215,064,761.86	188,993,983.19	
2016-08-01	223,259,976.86	192,917,642.94	
2016-09-01	222,007,047.86	195,941,143.23	
2016-10-01	219,715,705.86	190,999,191.26	
2016-11-01	223,356,703.86	191,925,956.13	
2016-12-01	211,418,552.86	192,296,331.10	
2017-01-01	212,803,432.86	188,250,306.32	

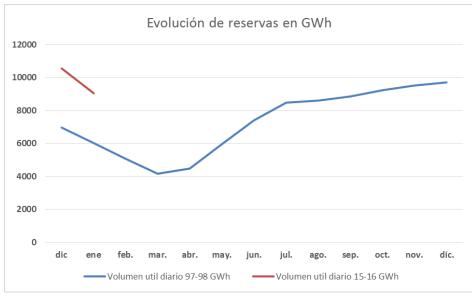
ED	PBP	AE	Condición
			Vigilancia
			Vigilancia
			Riesgo
			Vigilancia
			Vigilancia
			Normal
			Vigilancia
			Normal

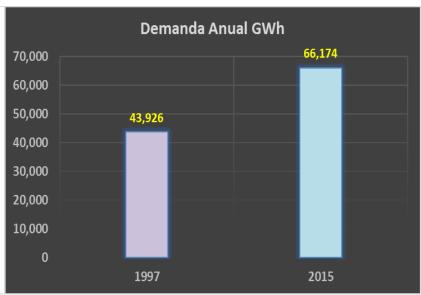
El estado de Vigilancia se confirma si el Nivel agregado de los aportes promedio mes en energía del SIN (HSIN) del mes anterior es menor a 90 % del promedio histórico de aportes



Análisis Equivalencia Embalse vs 97-98

Evolución de embalse útil agregado del SIN (%) en eventos "El Niño"

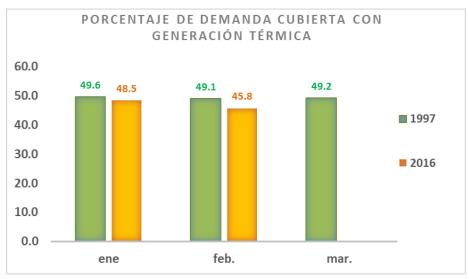

La historia de la operación del embalse útil del SIN en %, excluyendo el año 92 (Racionamiento energético), no registra descensos por debajo de 30%.

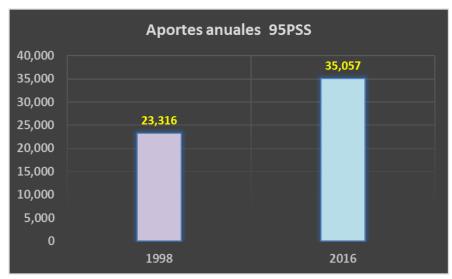


Análisis de la reservas del SIN en el tiempo

- Se ha cuestionado que la comparación directa de la evolución porcentual (Con referencia a la capacidad útil total) del embalse agregado en el tiempo puede no ser apropiada dado los cambios en SIN con el crecimiento de demanda e instalación de nueva generación.
- Para hacer comparables las reservas en el tiempo se puede recurrir a una variable que emplee una ponderación por demanda total anual:


Relación VolUtil/Dda_anual*100%





Análisis de la reservas del SIN en el tiempo

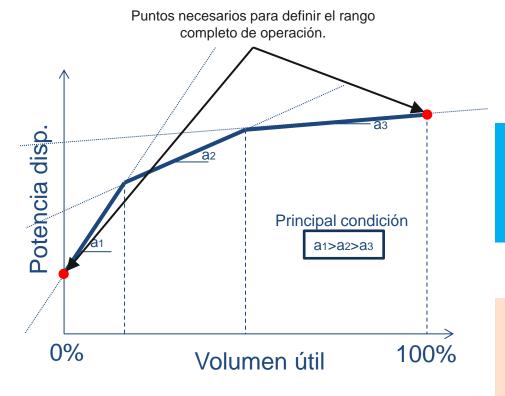
Análisis de la reservas del SIN en el tiempo

Embalse Fin Verano 2016	Energía Util 2016	Relación VU/DA
30%	5,181	7.8%
25%	4,317	6.5%
20%	3,454	5.2%

Embalse Equivalente en 1998		
24.8%		
20.7%		
16.6%		

Descender al 30% del embalse útil al final de del verano 2016, es energéticamente comparable con haber descendido al 24.8% en en el mismo periodo de 1998.

Calle 12 Sur No. 18 - 168 Bloque 2 PBX: (574) 3172244 - Fax: (574) 3170989 Medellín Colombia.


Todos los derechos reservados para XM. S.A.E.S.P

Curvas Nivel embalse versus potencia

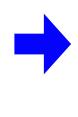
Modelado de la curva

Entre cada par de puntos, el interés está en que solo se active la recta que contiene el menor nivel. Cada segmento, unión entre dos puntos, se representa por una recta de la forma a_n**vVol*%+b_n, siendo *n* el segmento.

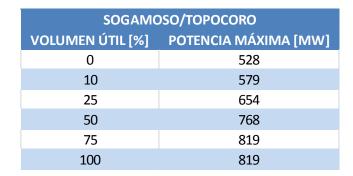
$$vPot_p \le pPOT^{disp} \forall p$$
 Incluyendo mantenimientos

$$vPot_p \le a_n^* vVol\%_{p-1} + b_n \quad \forall p,n$$

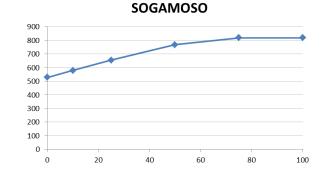
 $vPot_p \le a_n^*[(vVol_{p-1}-pVolMin)/(pVolMax-pVolMin)]+b_n \quad \forall p,n$


Restricciones lineales

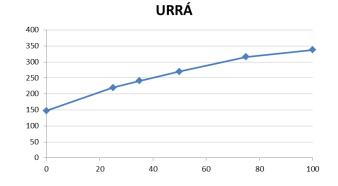
Información recibida


- Isagen → Miel/Amaní; Sogamoso/Topocoró
- Urrá → Urra/Urra
- Chivor → Miel/Esmeralda
- Emgesa → Betania/Betania; Guavio/Guavio
- EPM → Porce 3/Porce 3; Playas/Playas
- EPSA → Albán/Alto anchicayá; Prado/Prado; Salvajina/Salvajina

Datos reportados para el análisis de potencia (1)


MIEL/AMANÍ			
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]		
0	252		
10	276		
25	306		
50	345		
75	375		
100	396		

		MIE	L		
450					
400					
350					
300	4				
250	~				
200					
150					
100					
50					
0	1	-	-	1	
0	20	40	60	80	100

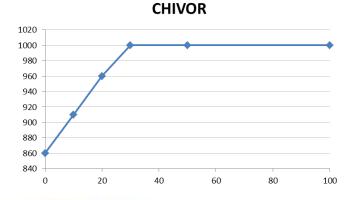


URRÁ/URRÁ			
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]		
0	148		
25	220		
35	241		
50	270		
75	316		
100	338		

Datos reportados para el análisis de potencia (2)

BETANIA/BETANIA			
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]		
0	362		
20	406		
40	446		
60	481		
80	511		
100	540		

		BETA	NIA		
600					
500					
400					
300					
200					
100					
0	ı	-	1	1	
0	20	40	60	80	100
		GII	WIO		



		GUA	/10		
1220					
1200				\rightarrow	
1180					
1160					
1140					
1120					
1100					
1080	/				
1060					
1040					
1020	1	1	T		
0	20	40	60	80	100

CHIVOR/ESMERALDA				
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]			
0	860			
10	910			
20	960			
30	1000			
50	1000			
100	1000			

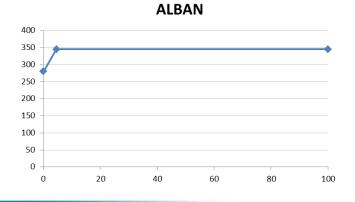
Datos reportados para el análisis de potencia (3)

PORCE 3/PORCE 3				
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]			
0	614			
15	644			
30	674			
43	700			
60	700			
100	700			

710					
700		_	+		
690		_/			
680		/			
670		•			
660					
650					
640	_				
630					
620					
610					
600	1	T	1	1	
0	20	40	60	80	100

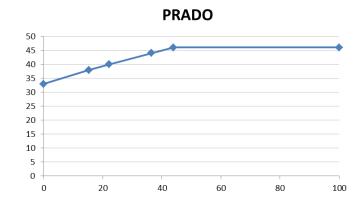
DI AVA C

PORCE 3

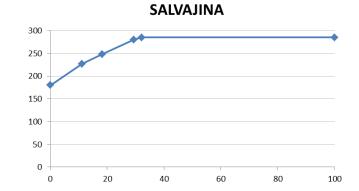

PLAYAS/PLAYAS					
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]				
0	198				
15	201				
30	204				
50	207				
61	207				
100	207				

		PLAT	AS		
208					
207			—		
206					
205					
204					
203					
202					
201					
200	/				
199					
198					
197	-	1	-	1	
0	20	40	60	80	100

ALBÁN/ALTO ANCHICAYÁ				
VOLUMEN ÚTIL [%] POTENCIA MÁXIMA [MW]				
0	280			
4.6	345			
100	345			



Datos reportados para el análisis de potencia (4)


PRADO/PRADO				
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]			
0	33			
15.3	38			
22.1	40			
36.5	44			
43.9	46			
100	46			

SALVAJINA/SALVAJINA				
VOLUMEN ÚTIL [%]	POTENCIA MÁXIMA [MW]			
0	180			
11.2	227			
18.3	248			
29.4	280			
32.1	285			
100	285			

