

GESTIÓN INTELIGENTE PARA UN MUNDO MEJOR

Dirigido al Consejo Nacional de Operación - CNO Documento XM - CND – 090 Jueves, 7 de junio de 2012

Todos los derechos reservados para XM S.A. E.S.P.

Informe de la operación real y esperada del Sistema Interconectado Nacional y de los riesgos para atender confiablemente la demanda

Centro Nacional de Despacho - CND

Documento XM - CND - 090

Jueves, 7 de junio de 2012

Contenido

- Indicadores calidad de la operación
- Evolución variables del SIN
- Panorama energético
- Certificación de operadores del SIN
- Análisis de GS fuera de mérito
- Aplicación Acuerdo CNO 389
- Varios
 - Lecciones aprendidas Cumbre de las Américas
 - Mantenimientos Gas
 - Información Acuerdo 518 (Mantenimientos)
 - Estudio de máxima transferencia a Panamá

Indicadores calidad de la operación

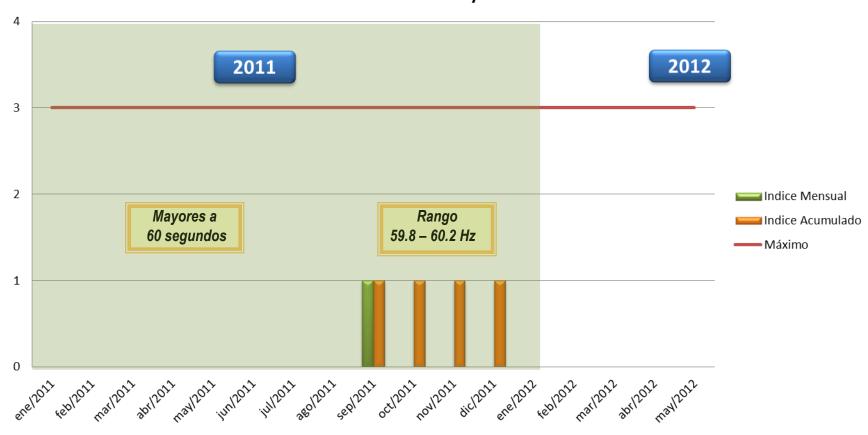
Eventos de Tensión Fuera de Rango Enero a Mayo 2012

■Indice Mensual ■Indice Acumulado —Máximo

En el mes de Mayo se presentaron 2 eventos de tensión en el sistema.

Mayo 02/12: A las 15:40 hrs disparo del circuito Urrá - Urabá 230 kV y de la bahía por 230 kV del transformador Urabá 135 MVA 230/115 kV. El agente reportó descargas atmosféricas en la zona.

Mayo 03/12: Disparo de las 3 unidades de la Tasajera con un total de 306 MW dejando abiertas la habías de línea de La Tasajera a Bello 220 kV y La Tasajera a Occidente 220 kV. La Tasajera - Barbosa 220 kV se encontraba en mantenimiento



chos reservados para XM S.A. E.S.P

Е.S. Р. Todos los derechos reservados para XM S.A.

Variaciones de Frecuencia

Eventos de Frecuencia Fuera de Rango Enero 2011 - Mayo 2012

En mayo no se presentaron eventos de frecuencia fuera de rango

os reservados para XM S.A. E.S.P.

Porcentaje de Demanda No Atendida Programada

Eventos de Demanda No Atendida Programada Enero 2011 - Mayo 2012

Por CAUSAS PROGRAMADAS se dejaron de atender 0.3 GWh. Las principales causas fueron:

06-05-2012 Apertura del transformador 1 en Jamondino 150 MVA 230/115/13.8 kV bajo las consignaciones C0074150 y C0079481 (0.06 GWh)

29-05-2012 Apertura del circuito Sabana de Torres - San Alberto 115 kV, bajo consignación C0086355 (0.05 GWh)

chos reservados para XM S.A. E.S.P.

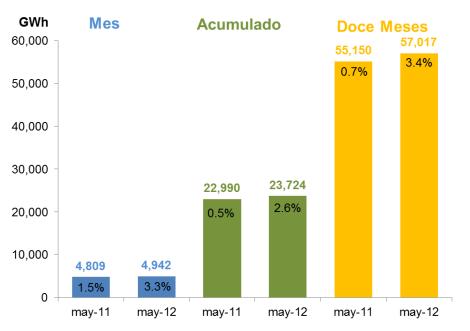
Porcentaje de Demanda NO Atendida No Program.

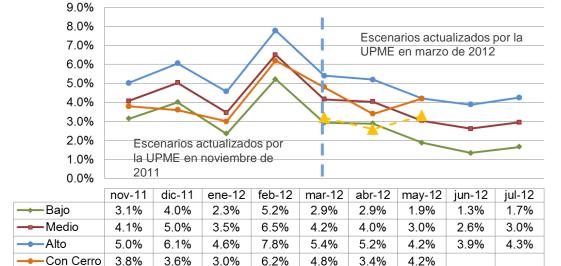
Eventos de Demanda No Atendida No Programada Enero 2011 - Mayo 2012

Se dejaron de atender 2.76 GWh. Las principal causa fue:

17-05-2012 Disparo bahía de trafo por 115 kV de la Enea 150 MVA 230/115 kV, de los ctos Esmeralda - Manizales 115 kV, Esmeralda - Insula 115 kV y San Felipe - Mariquita - Victoria 115 kV (0.12 GWh)

06-05-2012 Apertura del circuito Cerromatoso - Planeta Rica 110 kV bajo consignación de emergencia C0086110 (0.1 GWh)




Evolución variables del SIN

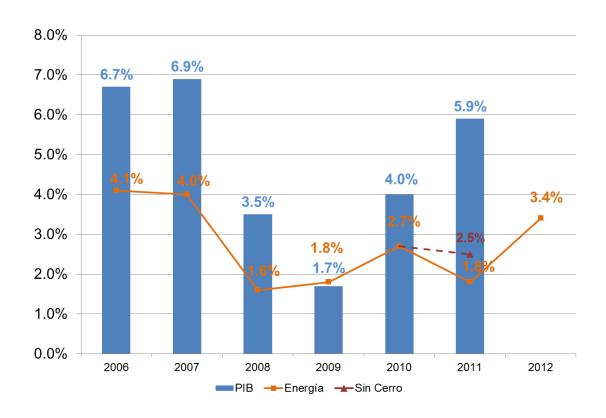
Seguimiento demanda del SIN – mayo 2012

PRELIMINAR

Con Cerromatoso los crecimiento fueron de 4.2%, 3.4% y 3.5% respectivamente.

3.2%

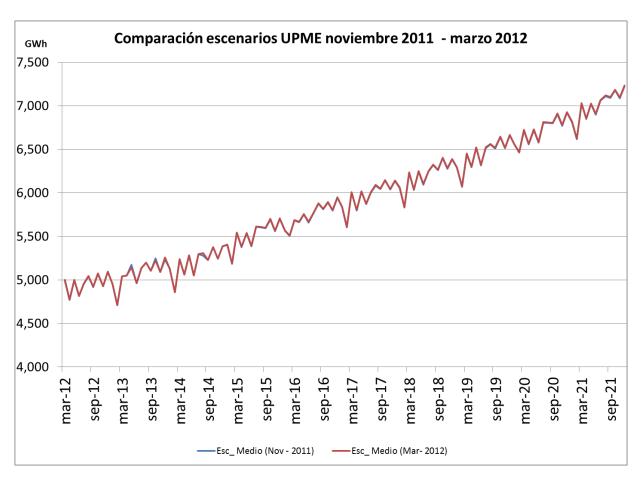
2.6%


3.3%

Sin Cerro

Comparación anual del PIB y Demanda del SIN

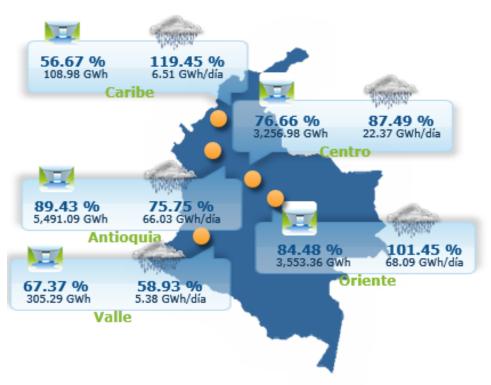
Crecimiento PIB y Demanda de Energía SIN



2011 Sin efecto CERROMATOSO

E.S.P. Todos los derechos reservados para XM S.A.

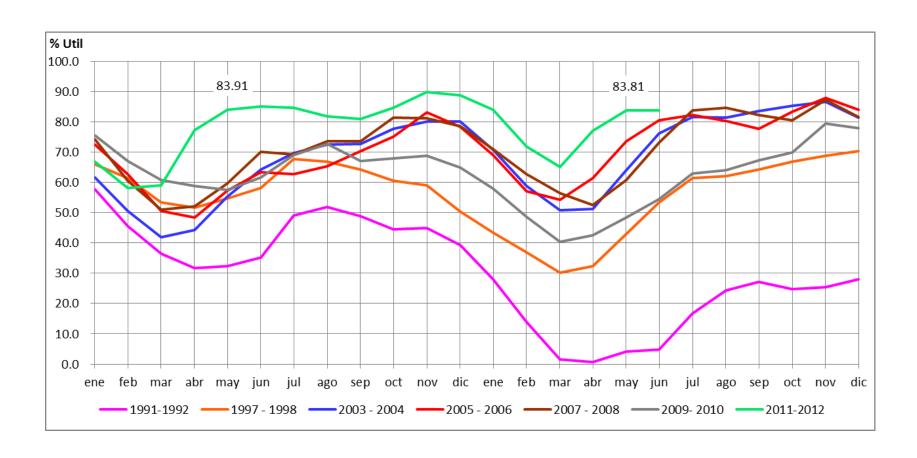
Escenarios UPME – Comparación noviembre 2011 y revisión de marzo 2012

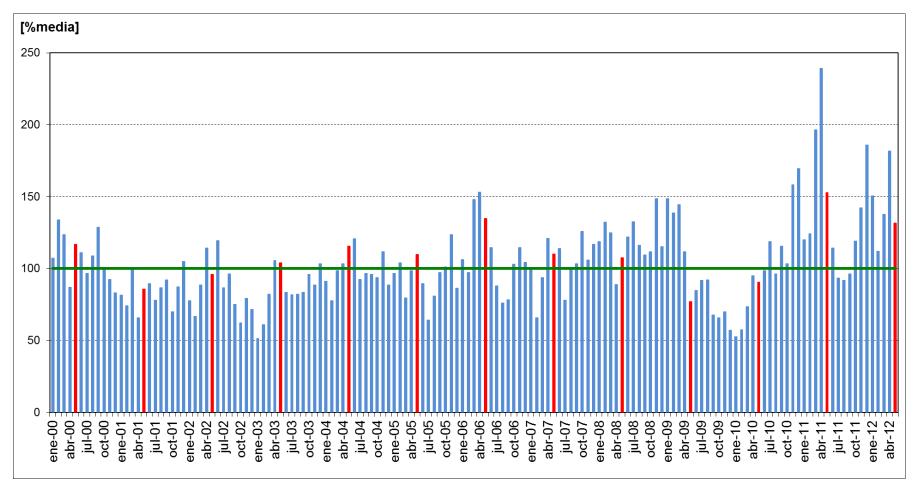


En general son muy similares. Las máximas diferencias mensuales fueron de 26 GWh (meses de may/13, oct/13, dic/13, ago/14).

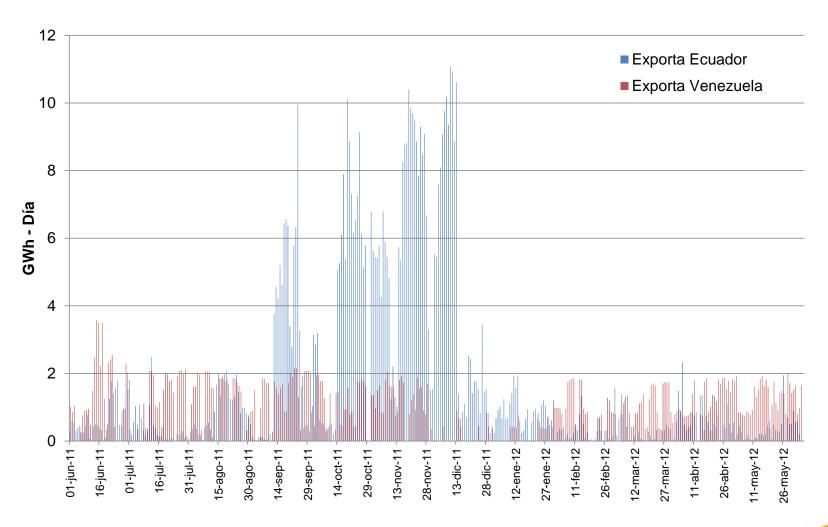
UPME espera crecimiento de 2012 del 3.3% y para 2013 del 3.1%. Entre los años 2012 y2020 se espera una tasa media de crecimiento de 3.9%.

Estado variables hídricas – Junio 5

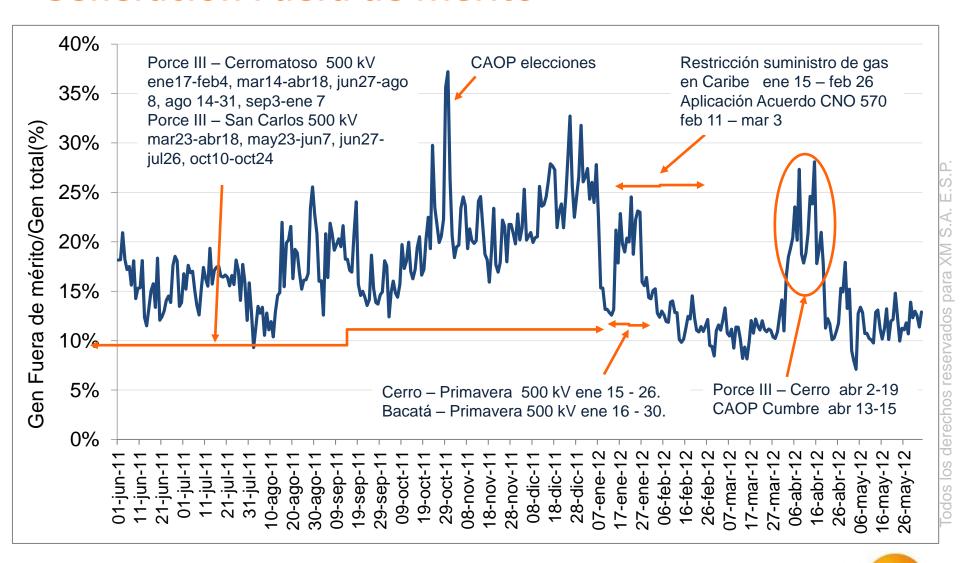

Sistema Interconectado Nacional (SIN)


Evolución del embalse agregado SIN Primer y Segundo Año

filial de isa


Aportes Hídricos al SIN desde 2000

En la gráfica se muestra la evolución de los aportes energéticos mensuales al SIN, en su componente hidráulica, desde enero de 2000. Para una fácil lectura de dicha evolución, se han resaltado en rojo los aportes de mayo para cada uno de los años presentados. En este sentido, mayo de 2012 ha sido el tercer mayo más húmedo en lo que va corrido de este siglo, superado por mayo de 2011 y 2006.



Exportaciones

Generación Fuera de Mérito

Panorama energético

Información Básica Simulaciones

	Descripción
Modelo de Optimización	SDDP versión 10.2 .3c
Tipo de Estudio	Estocástico 100 series Modelo ARP. • Coordinado Colombia – Ecuador -Panamá
Horizonte	120 meses (Junio/12 – Mayo/22)
Demanda	Escenario medio de UPME (Marzo/12)
Precios de Combustible	Proyecciones UPME febrero/2012 para Gas, Carbón y Fuel Oil
Disponibilidad de Combustible	 Costa: Escenario bajo hasta 2015 (Decrecimiento según producción). GNI desde 2016 (Regasificadora de 400 MPCD) y 180 MPCD. Interior: 120 GBTUD constantes a lo largo del horizonte.
Interconexiones internacionales	<u>Ecuador</u> : (Máxima 220 MW; Media 400 MW; Mínima 400MW – 9GWh/dia Col-Ecu, 0GWh/dia Ecu - Col. <u>Panamá</u> : 300 MW desde Enero de 2016.
Plan de Expansión	 Escenario base. Fechas esperadas de operación reportada por agentes Escenario con atrasos.
Modelo de Red	Red Completa - sin indisponibilidades o mantenimientos que afecten las transferencias entre las áreas

Supuestos acordados en la reunión del grupo de supuestos del CNO de Mayo 2012

Información Básica Simulaciones Demanda

COLOMBIA

- Escenario UPME

	Demanda En	ergía Eléctri	ca [GWh / año]	Tasa de Crecimiento		
Año	Esc. Alto	Esc. Medio	Esc. Bajo	Esc. Alto	Esc. Medio	Esc. Bajo
2011	57,150	57,150	57,150	1.79%	1.79%	1.79%
2012	59,729	59,061	58,393	4.51%	3.34%	2.17%
2013	62,162	60,874	59,586 60,744	4.07% 3.26%	3.07% 2.62%	2.04% 1.94%
2014	64,191	62,468	60,744	3.26%	2.62%	1.94%
2015	68,417	66,251	64,084	6.58%	6.06%	5.50%
2016	71,596	68,973	66,349	4.65%	4.11%	3.53%
2017	74,732	71,637	68,542	4.38%	3.86%	3.31%
2018	78,010	74,450	68,542 70,890	4.39%	3.93%	3.43%
2019	81,423	77,396	73,369	4.38%	3.96%	3.50%
2020	85,163	80,669	76,174 79,093	4.59%	4.23%	3.82% 3.83%
2021	89,016	84,054	79,093	4.52%	4.20%	3.83%
2022	92,796	87,367	81,939	4.25%	3.94%	3.60%
2023	96,489	90,593	84,698	3.98%	3.69%	3.37%
2024	99,876	93,513	87,150	3.51%	3.22%	2 90%
2025	103,480	96,650	89,821	3.61%	3.35%	3.06%
2026	107,264 111,239	99,968	92,671	3.66%	3.43%	3.17% 3.28%
2027	111,239	103,475	95,711	3.71%	3.51%	3.28%
2028	114,887	106,656	98,425	3.28%	3.07%	2.84%
2029	119,055	110,357	101,659	3.63%	3.47%	3.29%
2030	123,371	114,206	105,041	3.63%	3.49%	3.33%
2031	127,842	118,210	108,578	3.62%	3.51%	3.37%

Fuente: http://www.siel.gov.co/siel/documentos/documentacion/Demanda/proyeccion_demanda_ee_mar_2012.pdf

Notas: Incluye la demanda de las cargas especiales.

A partir del año 2015 las proyecciones incluyen las exportaciones a Panamá.

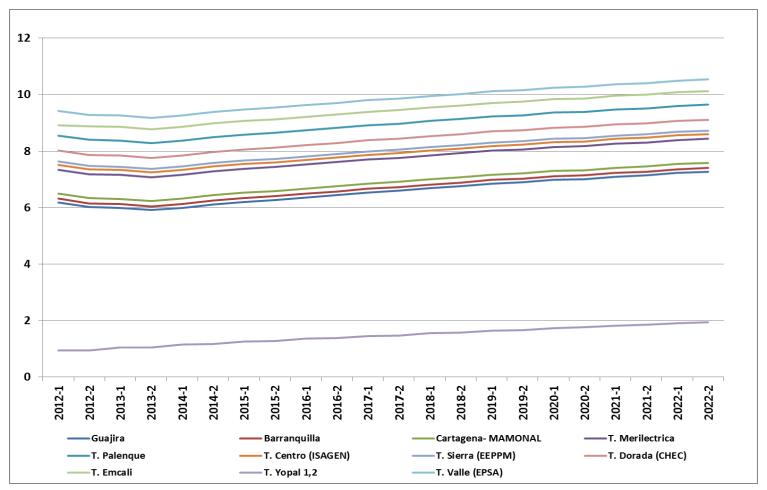
Información Básica Simulaciones Intercambios internacionales

Capacidad máxima de intercambios eléctricos Internacionales

Interconexión	Fecha	Capacidad [MW]
Colombia - Ecuador *		220 en Dem Máxima>
Energía máxima (9.0 GWh/día)		400 en Dem Media>
Ellergia maxima (9.0 GWII/dia)		400 en Dem Mínima>

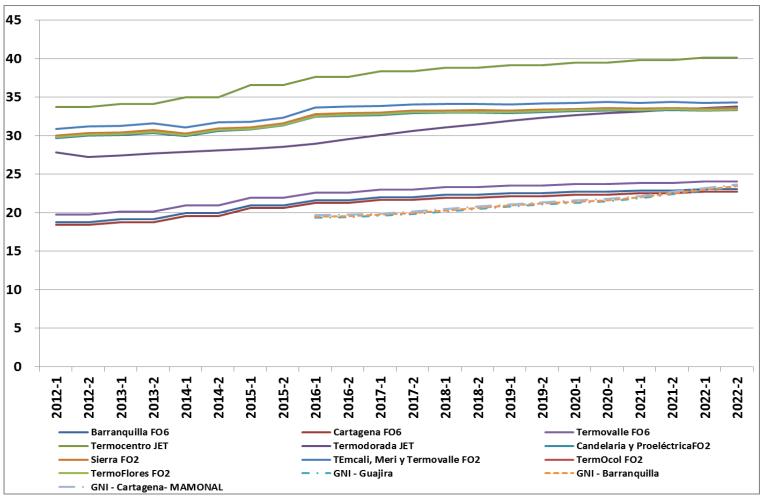
^{*} Se consideran las transferencias históricas y las restricciones de despachos particulares.

Panamá:


Los intercambios con panamá se reflejan a través de un incremento en la demanda del SIN colombiano a partir de enero de 2016. Se considera un intercambio máximo de 300 MW en todos los periodos de demanda.

No se considera importaciones de Colombia en el horizonte de LP

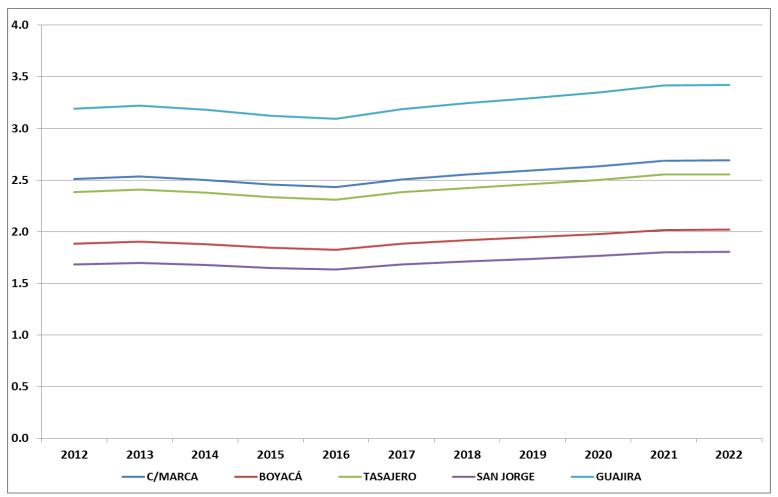
Información Básica Simulaciones Costos del Gas Natural (US\$/MBTU)


Precios en USD\$/MBTU, constantes de diciembre de 2011, actualizados con IPP de abril de 2012.

Fuente: UPME, febrero de 2012

S ш Todos los derechos reservados para XM S.A.

Información Básica Simulaciones Costos del GNI y Combustible Líquido (US\$/MBTU)


Precios en USD\$/MBTU, constantes de diciembre de 2011, actualizados con IPP de abril de 2012.

S. G. ш Todos los derechos reservados para XM S.A.

Información Básica Simulaciones Carbón (US\$/MBTU)



Precios en USD\$/MBTU, constantes de junio de 2010, actualizados con IPP de abril de 2012.

Plan de Expansión Generación considerado

Plan de Expansión de generación

ITEM	PROYECTO	Capacidad [MW]	FECHA ESPERADA DE ENTRADA EN OPERACIÓN	PROMOTOR DEL PROYECTO	FECHA ASIGNADA A OBLIGACIÓN DE ENERGÍA FIRME	Observaciones
1	Amoyá (H)	80	Noviembre 26 de 2012	ISAGEN	Diciembre 01 de 2011	Fecha según auditoria de plantas
2	Gecelca 3 (T)	150	Abril 14 de 2013	GECELCA	2012	Fuente: Según auditoria seguimiento plantas cargo por confiabilidad.
3	Termocol (T)	202	Agosto 31 de 2013	POLIOBRAS		Fuente: Resolución MME 18-0664- 2012.
5	Cucuana (H)	60	Septiembre de 2013	EPSA	Diciembre 01 de 2014	Fecha actualizada por la UPME. Presentación seguimiento de proyectos de generación. Subcomité de Plantas Térmica, septiembre 20 de 2011
4	Sogamoso (H)	800	Diciembre 30 de 2013 (Primera unidad) Febrero 28 de 2014 (Segunda unidad) Abril 30 de 2014 (Tercera unidad)	ISAGEN	Diciembre 01 de 2014	Fecha actualizada por ISAGEN en reunión conjunta XM - ISAGEN, Abril 30 de 2012.
6	Quimbo (H)	420	Noviembre 30 de 2014	EMGESA	Diciembre 01 de 2014	Fuente: Informe de avance del plan de expansión de generación UPME junio 2011
7	Ambeima (H)	45	Diciembre 01 de 2015	EMPRESA ENERGÍA DE LOS ANDES S.A.S E.S.P.	Diciembre 01 de 2015	Fuente: Resultados OEF Asignada Subasta 2015-2016
8	Gecelca 32 (T)	250	Diciembre 01 de 2015	GENERADORA Y COMERCIALIZADORA DE ENERGÍA DEL CARIBE S.A. E.S.P.	Diciembre 01 de 2015	Fuente: Resultados OEF Asignada Subasta 2015-2016
9	Carlos Lleras Restrepo (H)	78.1	Diciembre 01 de 2015	HIDROELÉCTRICA DEL ALTO PORCE S.A.S E.S.P.	Diciembre 01 de 2015	Fuente: Resultados OEF Asignada Subasta 2015-2016
10	San Miguel (H)	42	Diciembre 01 de 2015	LA CASCADA S.A.S. E.S.P.	Diciembre 01 de 2015	Fuente: Resultados OEF Asignada Subasta 2015-2016
11	Tasajero II (T)	160	Diciembre 01 de 2015	TERMOTASAJERO S.A. E.S.P.	2015	Fuente: Resultados OEF Asignada Subasta 2015-2016
12	TERMONORTE (T)	88	Diciembre 01 de 2017	TERMONORTE S.A.S. E.S.P.	Diciembre 01 de 2017	Fuente: Resultados Subasta GPPS
13	Pescadero Ituango (H)	1200	Diciembre de 2017	HIDROELECTRICA PESCADERO ITUANGO	2018	Fuente: Informe de avance del plan de expansión de generación UPME junio 2011
14	PORVENIR II (H)	352	Diciembre 01 de 2018	PRODUCCIÓN DE ENERGÍA S.A.S.	Diciembre 01 de 2018 Diciembre 01 de 2019	Fuente: Resultados Subasta GPPS
15	Porce IV (H)	400	Suspendido indefinidamente	EPM	Diciembre 01 de 2015	Fuente: EPM comunicación Rad. XM 000083, enero 05 de 2011
						- filial

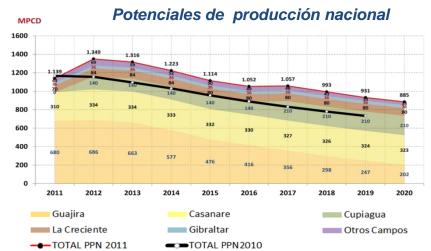
Variables Energéticas con significante impacto en la confiabilidad

Escenario de atraso en entrada de proyectos

Proyecto	Atraso Esperado	NuevaFecha	
Termocol	3 meses	Dic 2013*	
Gecelca 3	7 meses	Dic 2013*	
Quimbo	1 año	Dic 2015*	
Ituango	1 año	Dic 2018	

^{*} Un año posterior a fecha OEF

Escenarios de Hidrología			
Tipo Escenario			
Estocástico	100 series Sintéticas		
	Modelo ARP		


Escenario de disponibilidad de gas

	2012 - 2015	2016 -2022
Costa Caribe	Escenario de decrecimiento iniciando en 380 GBTUD en 2012	180 GBTUD Gas Nacional y 400 GBTUD de GNI
Interior	120 GBTUD	120 GBTUD

Disponibilidad de Gas para Generación (GBTUD)-**Incluyendo GNI 2016**

Fuente: Ministerio de Minas y Energía (Octubre 2011)

Disponibilidad (GBTUD)

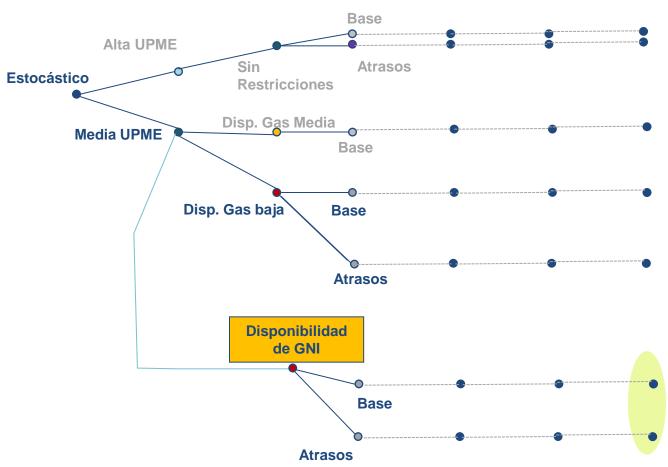
	Costa Gas Nacional	GNI Costa	Interior
2012	380	-	120
2013	357	-	120
2014	336	-	120
2015	316	-	120
2016	180	400	120
2017	180	400	120
2018	180	400	120
2019	180	400	120
2020	180	400	120

S ш

filial de isa

Hidrología Demanda Disponibilidad de Combustibles

Entrada de Recursos de Generación


Interconexiones Disponibilidad de Internacionales

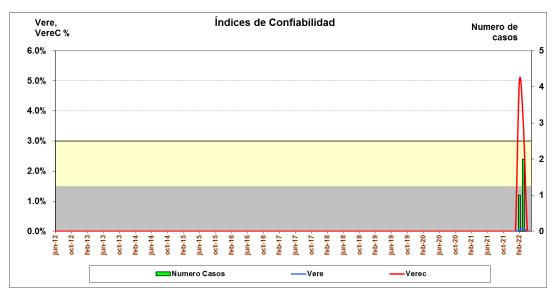
Generación

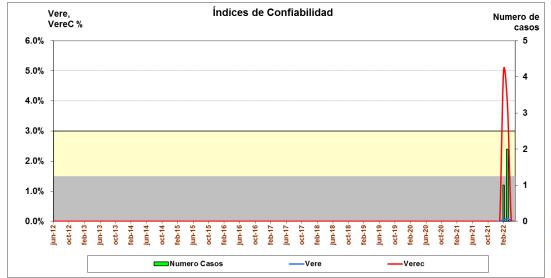
Precios de Combustibles Pérdidas hídricas

embalse

Generación

Casos de análisis

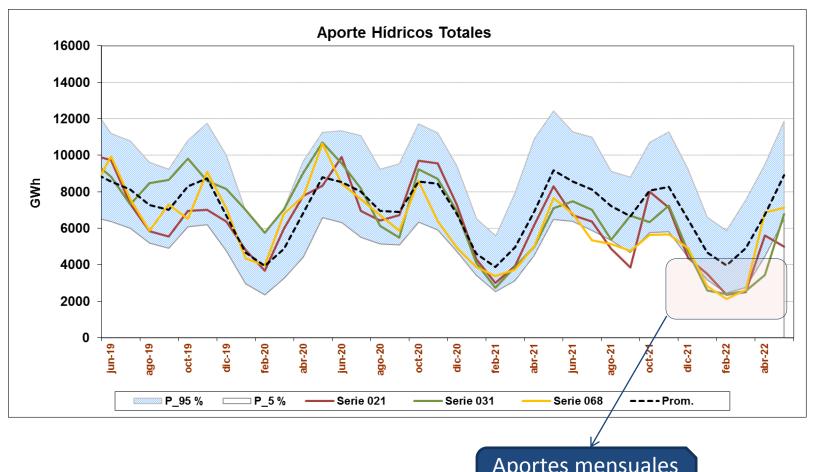



Resultados Simulaciones

Índices de Confiabilidad

Sin Atrasos

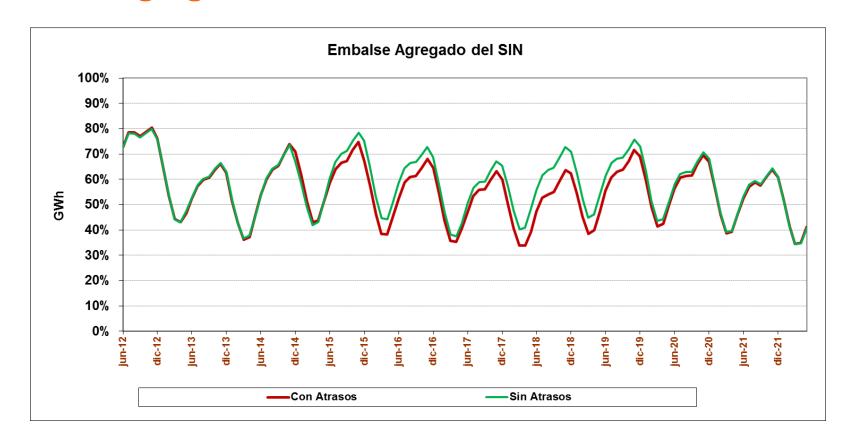
Con Atrasos



Ш. S. P. Todos los derechos reservados para XM S.A.

Resultados Simulaciones

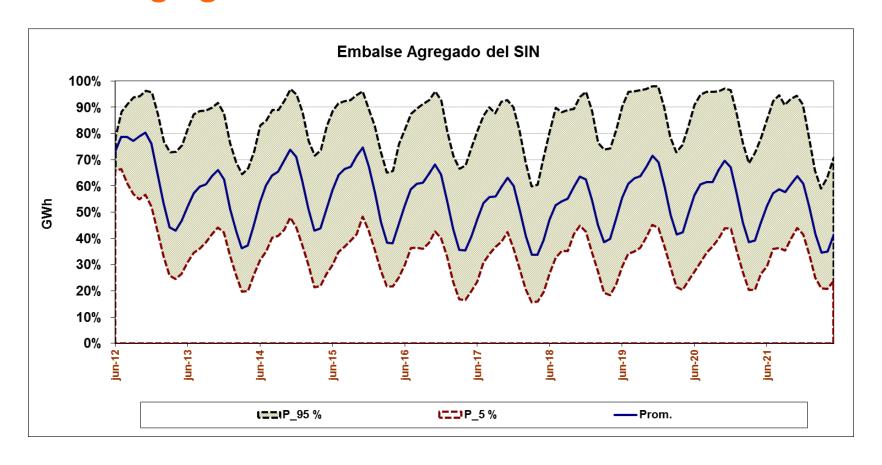
Aportes de series sintéticas


Aportes mensuales inferiores al P5%

Todos los derechos reservados para XM S.A. E.S.P.

Resultados Simulaciones

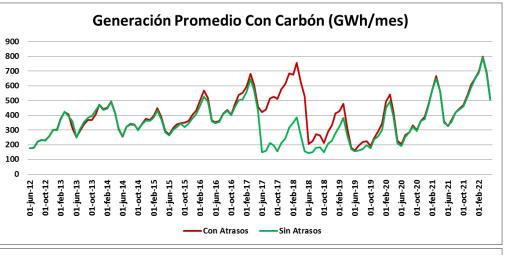
Embalse Agregado

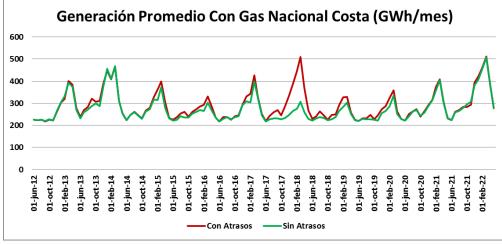


Ш. S. P. Todos los derechos reservados para XM S.A.

Resultados Simulaciones

Embalse Agregado – Caso Con atrasos

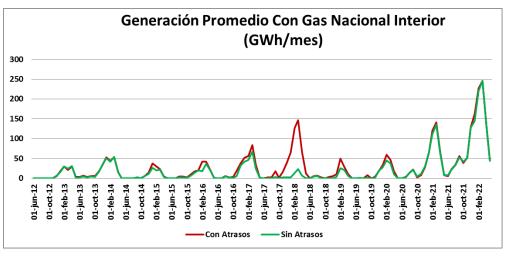


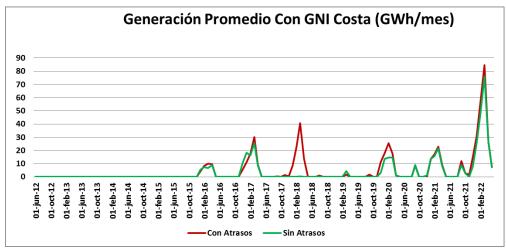


E.S.P. Todos los derechos reservados para XM S.A.

Resultados Simulaciones

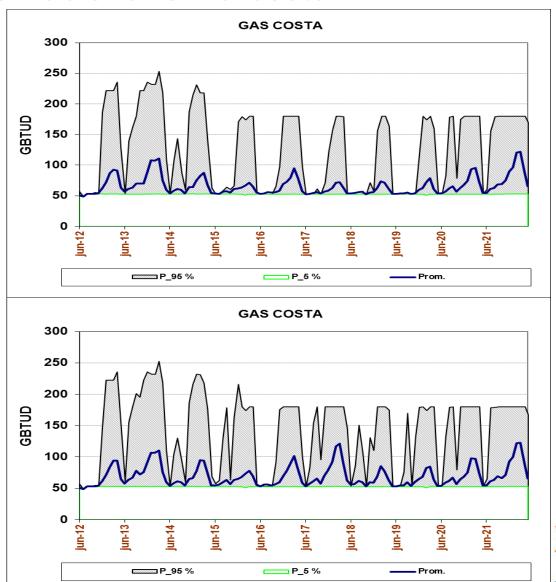
Generación Térmica





Resultados Simulaciones

Generación Térmica

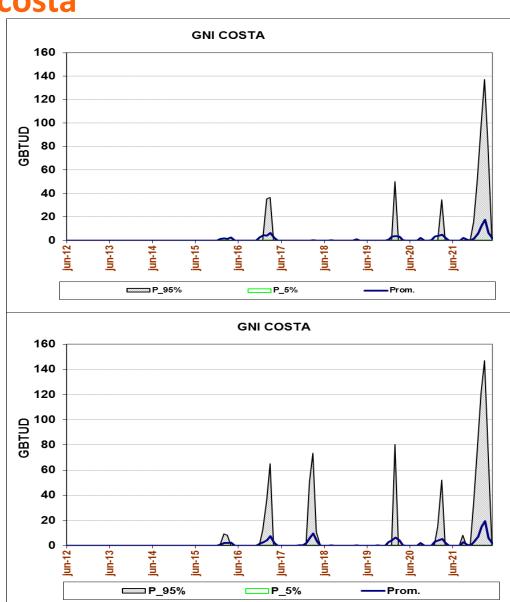


Resultados Simulaciones

Consumos de Gas Nacional en la Costa

Sin Atrasos

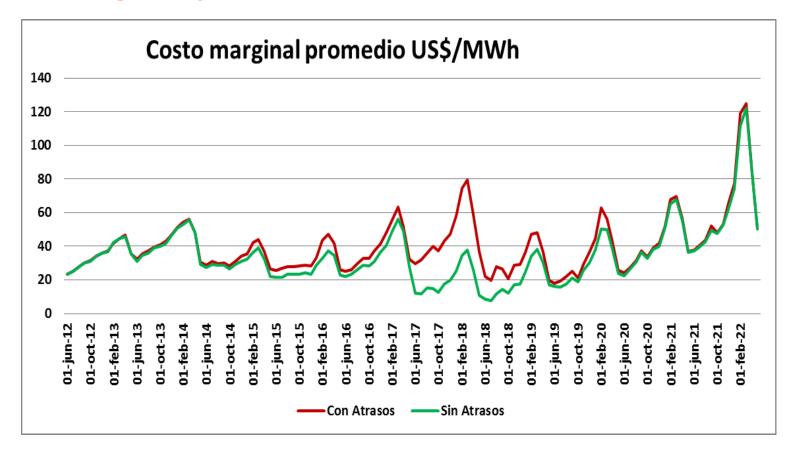
Con Atrasos



Resultados Simulaciones

Consumos de GNI costa

Sin Atrasos


Con Atrasos

Resultados Simulaciones

Costo marginal promedio

Conclusiones y Recomendaciones

- Con los supuestos considerados se observa una atención confiable de la demanda nacional a lo largo del horizonte con excepción del verano de 2022 donde se presentan hasta dos casos con déficit provocadas por series críticas.
- Ante el atraso de proyectos considerado se presenta mayor uso de generación térmica en especial durante periodo de tiempo donde se modela el atraso de proyecto hidroeléctrico de Ituango (2017-2018).
- Para las series hidrológicas extremas los resultados muestran una operación al límite de los recursos, donde los niveles de embalse agregado descienden a valores inferiores a 30%, y los consumos de gas natural nacional alcanzan los máximos de disponibilidad considerados.
- Con el supuesto de disponibilidad de gas natural nacional, el consumo de GNI en la costa para el percentil 95 alcanzan valores de 140 GBTUD (de los 400 GBTUD de capacidad considerados).

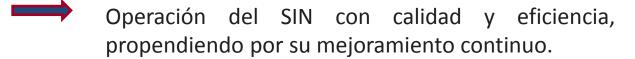
Conclusiones y Recomendaciones

- Ante la incertidumbre futura, es conveniente continuar revisando permanente los escenarios de disponibilidad y precios del gas natural nacional y del GNI.
- Se requiere realizar un monitoreo permanente al avance en el desarrollo de los proyectos de generación y transmisión definidos.

Certificación de operadores del SIN

Objetivo

Presentar para análisis y aprobación del Consejo Nacional de Operación, la propuesta de certificación de operadores del SIN Colombiano.



1. Antecedentes y referentes internacionales

Apagón Nacional 2007

Cambios regulatorios, tecnológicos y del Sistema Eléctrico Colombiano.

Errores en el protocolo de comunicaciones y unificación de términos operativos.

1. Antecedentes y referentes internacionales

Programa de Certificación de Operadores del Sistema de la NERC - North American Electric Reliability Corporation (7200 operadores)

- Aplica a operadores de centros de control de regiones de Norte América.
- Estándares de la NERC y principios básicos de operación de sistemas de potencia.

Programa de Certificación de la FAA (Federal Aviation Administration)

Reglamenta el sector aeronáutico en lo concerniente a equipos y personas.
 Estructura actividades de certificación de aeronaves, aerolíneas, aeropuertos y pilotos.

Todos los derechos reservados para XM S.A. E.S.P.

1. Antecedentes y referentes - XM

2. Certificación en XM

Titulación – 180101046: Ejecutar la supervisión y la operación

Norma 1 – 280101140
Supervisar las variables y acciones
operativas del Sistema Interconectado
Nacional – SIN -

Norma 2 - 280101141 Operar el Sistema Interconectado Nacional – SIN - **Verificación Técnica**

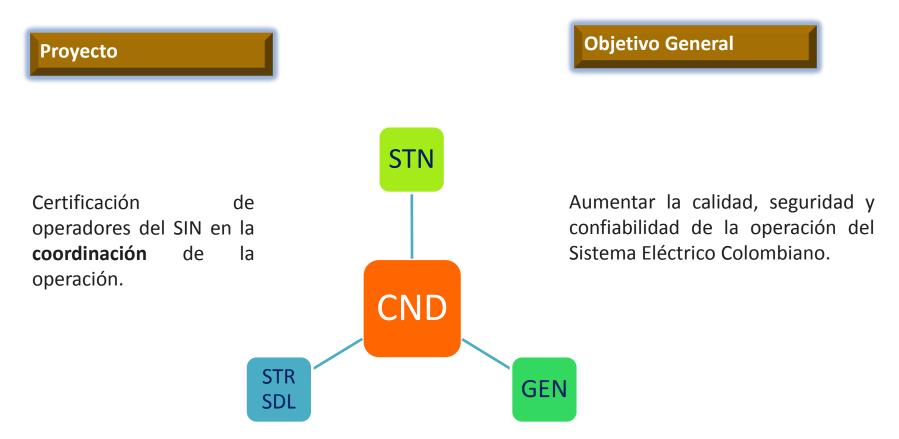
EPSA - TRANSELCA

Titulación – 180101049: Realizar la programación de los recursos de generación y la planeación eléctrica y energética del Sistema Interconectado Nacional – SIN

Norma 1 – 280101140 Análisis eléctrico Norma 2 – 280101141

Optimizar la programación de los recursos de generación

Norma 3 - 280101142 Planeación energética Verificación Técnica


ISA - CODENSA

EMGESA - EPM

3. Propuesta al Sector Eléctrico

3. Propuesta al Sector Eléctrico

Certificación de Operadores STN, STR, SDL y Generación

Elementos de competencia

- 1. Identificar las variables y acciones operativas del SIN.
- 2. Verificar que las variables del SIN cumplan con las recomendaciones de los estudios eléctricos y energéticos.
- 3. Coordinar la ejecución de las acciones operativas sobre los equipos del SIN.
- 4. Asegurar las condiciones operativas del SIN.
- 5. Controlar las variables del SIN.

ioannis kounadeas - Fotolia.com

Rangos de Aplicación

Estados de operación:

Normal Emergencia Restablecimiento

Todo de acuerdo con la reglamentación vigente y los procesos establecidos en la empresa.

3. Propuesta al Sector Eléctrico

Certificación de Operadores General

Condiciones

Referente NCL

Proceso Voluntario

Vinculada a una actuación de la vida real

Libre acceso

No compara personas

Independiente de cuándo, cómo y dónde se adquirió la competencia

Resultado: la persona es competente o aún no competente

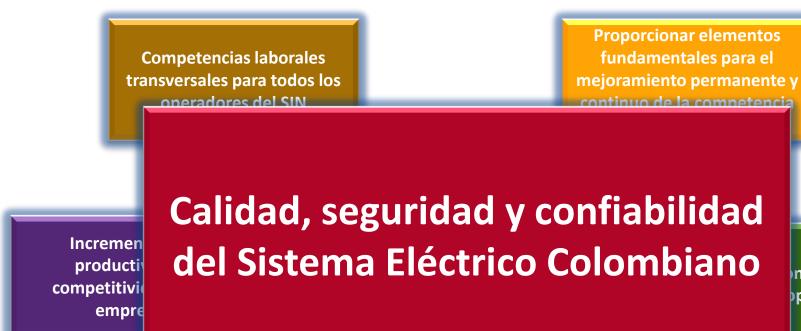
Certificado en una NCL

4. Beneficios para el Sector Eléctrico

Competencias laborales transversales para todos los operadores del SIN Proporcionar elementos fundamentales para el mejoramiento permanente y continuo de la competencia de los recursos humanos.

Incremento de la productividad y competitividad de las empresas.

KonstantinosKokkinis - Fotolia.com


Identificar necesidades de capacitación al interior de las empresas, "planes reales

ante necesidades reales"

Desarrollo personal y técnico de personal operativo.

nal y técnico perativo.

Identificar necesidades de capacitación al interior de las empresas, "planes reales ante necesidades reales"

5. Acuerdos con el Sector Eléctrico

ACUERDOS

XM se compromete a gestionar conjuntamente con el CNO y con las compañías del sector eléctrico el proceso de normalización y certificación.

El SENA garantiza apoyo al desarrollo de este proceso.

Las empresas garantizan el tiempo requerido y los escenarios correspondientes a la recolección de evidencias de los candidatos, así mismo, el tiempo asignado a los evaluadores para su desempeño en el proceso, y realizar las acciones correspondientes a los planes de mejoramiento según necesidad de los candidatos.

XM se capacitaciones usando e-learning como apoyo a los procesos de entrenamiento de los operadores mediante su plataforma SAE.

XM hará un diagnóstico preliminar.

5. Acuerdos con el Sector Eléctrico

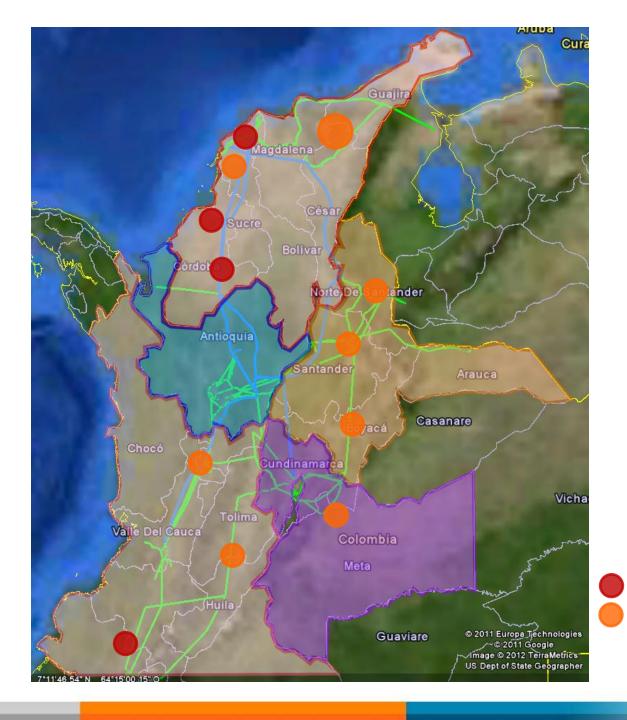
ACUERDOS

El SENA se compromete a proveer personal en todo el país para aplicar los instrumentos de evaluación de conocimiento a los candidatos, así mismo, XM podría cumplir con la función de "evaluador" en caso que así se haya definido con el sector.

5. Acuerdos con el Sector Eléctrico

CRONOGRAMA PROPUESTO

Propuesta de Norma de Competencia Laboral – NCL para certificación de operadores.	
NCL Coordinación con STN – Comité de Transmisión NCL Coordinación con Generación Comité de Operación	Jun 2012 - Dic 2012
NCL Coordinación con STR – SDL – Comité de Distribución	
Diagnóstico de estado de conocimiento de los operadores	Ene 2013 - Abr 2013
Verificación Técnica de NCL	Ene 2013 - Abr 2013
Aprobación por parte del SENA de la NCL	Jun 2013
Realización de instrumentos de evaluación de conocimiento, desempeño y producto para certificación de operadores	Ene 2013 - May 2013
Inicio del proceso de certificación de operadores	Jul 2013 – Dic 2013



Análisis de GS fuera de mérito

Situación actual del SIN

Agotamiento de la capacidad disponible de transporte o transformación

Atlántico

ii. **Bolívar**

iii. Córdoba-Sucre

iv. Cerromatoso

GCM ٧.

vi.

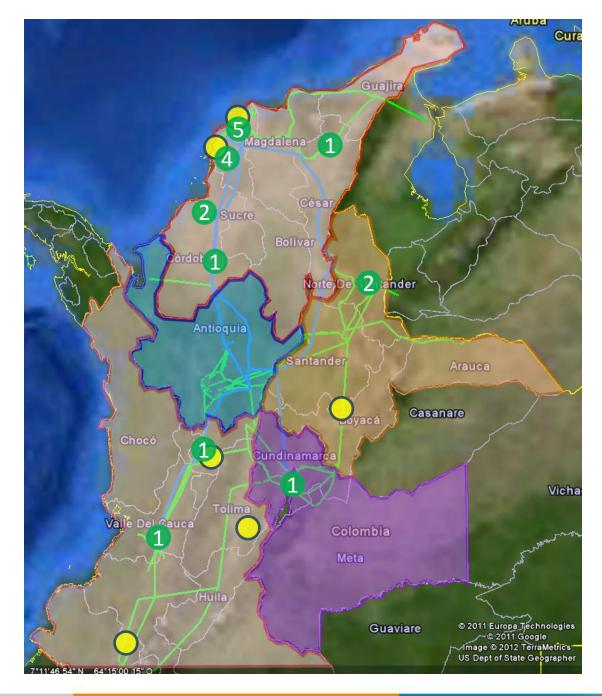
vii.

viii.

ix.

X.

xi.

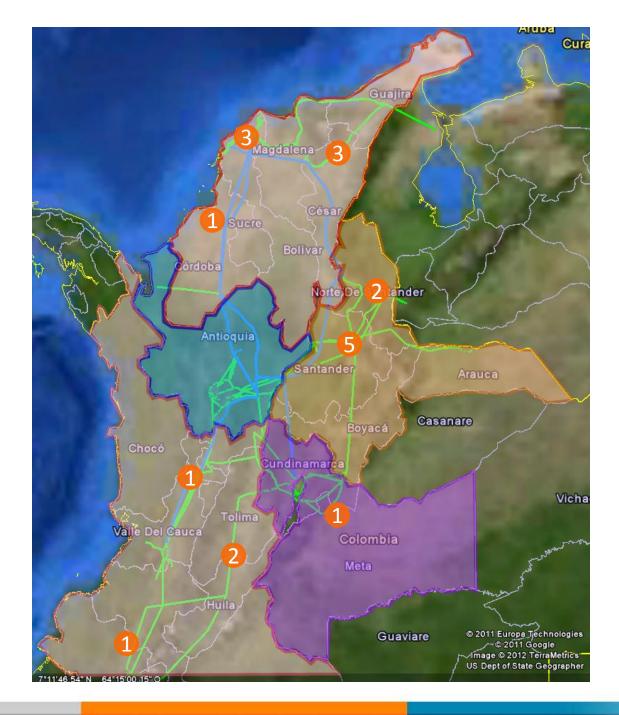

xii.

xiii.

xiv.

Riesgo de DNA ante N-1

Medidas para minimizar DNA ante N-1.


Generación de seguridad:

- i. Atlántico
- ii. Bolívar
- iii. EBSA-ENERCA
- iv. Cauca-Nariño
- v. Huila-Tolima
- vi. CQR

ESPS implementados:

- . Atlántico
- i. Bolívar
- iii. Córdoba-Sucre
- iv. Cerromatoso
- v. GCM
- vi. CENS
- vii. Oriental
- viii. CQR
- ix. Valle

ESPS propuestos:

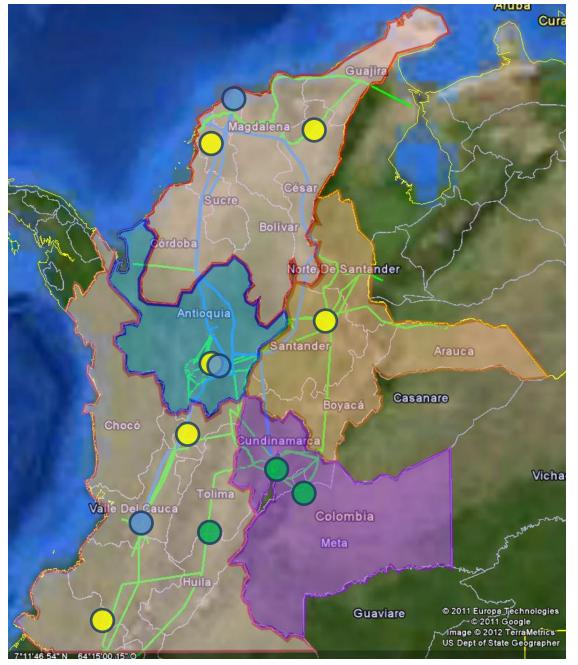
i. Atlántico

ii. Córdoba-Sucre

iii. GCM

iv. ESSA

v. CENS


vi. Meta

vii. Cauca-Nariño

viii. Huila-Tolima

ix. CQR y Valle

Bajas tensiones

i. Antioquia

ii. Bolívar

iii. GCM

iv. Nordeste

v. Bogotá

vi. Meta

vii. Cauca-Nariño

viii. Huila-Tolima

ix. CQR

Se programa GS

No se cuenta con GS

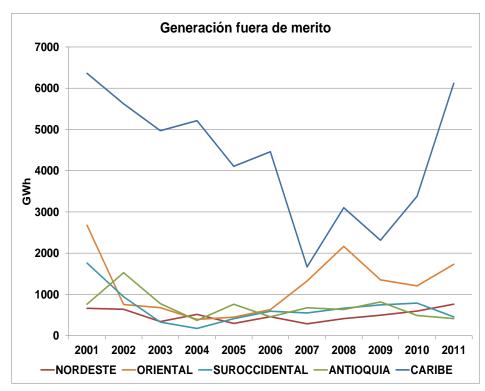
Atrapamiento de generación

i. Antioquia

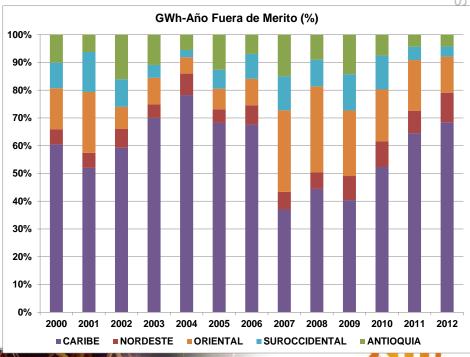
ii. Atlántico

iii. Valle

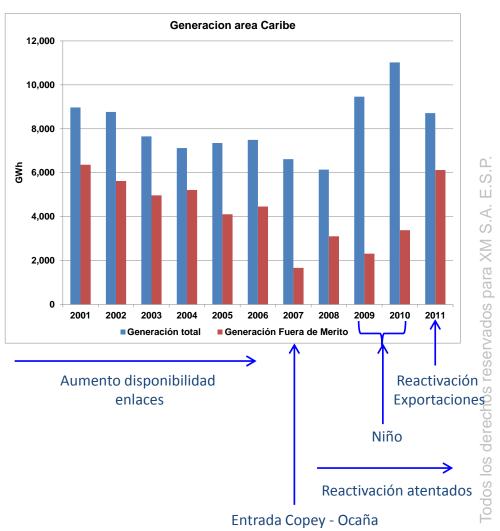
Análisis evolución histórica generación fuera de mérito


Objetivos

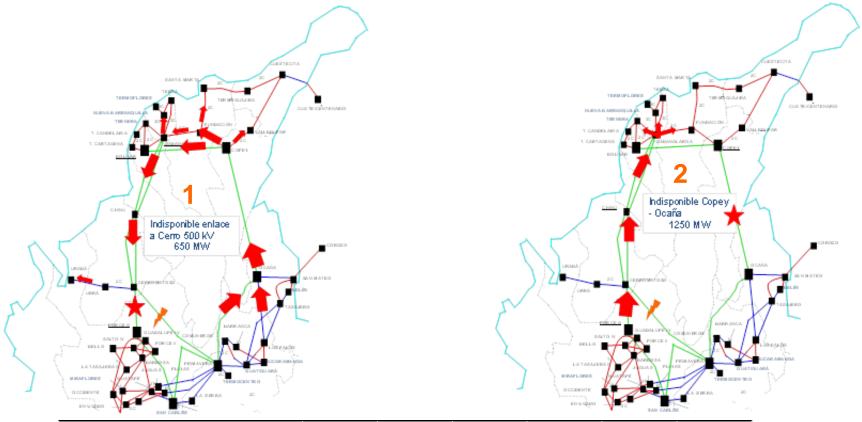
Presentar los resultados del análisis de la evolución de la generación fuera de mérito durante los últimos años en el SIN.



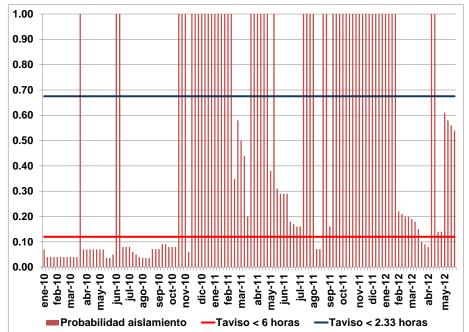
Generación Fuera de Mérito


- Tendencia a disminución en la generación fuera de mérito entre el 2001 y el 2007.
- Incremento 36% entre 2009 y 2011.
- Caribe, Oriental y Nordeste > 80%

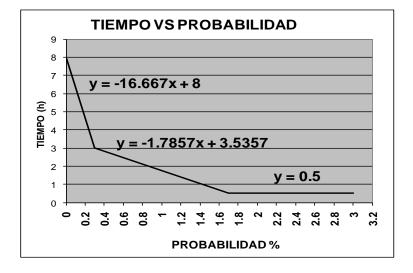
Щ .


Año	Número de enlaces disponibles entre el interior y la costa				
	3	2	1	0	
2000	0	220	145	0	
2001	0	3	233	129	
2002	0	0	336	29	
2003	0	217	148	0	
2004	0	299	49	17	
2005	0	288	62	15	
2006	0	322	43	0	
2007	274	91	0	0	
2008	300	65	0	0	
2009	300	65	0	0	
2010	229	136	0	0	
2011	170	195	0	0	
2012	117	35	0	0	

Entrada Copey - Ocaña 31/Mar/2007 Cero atentados enlaces

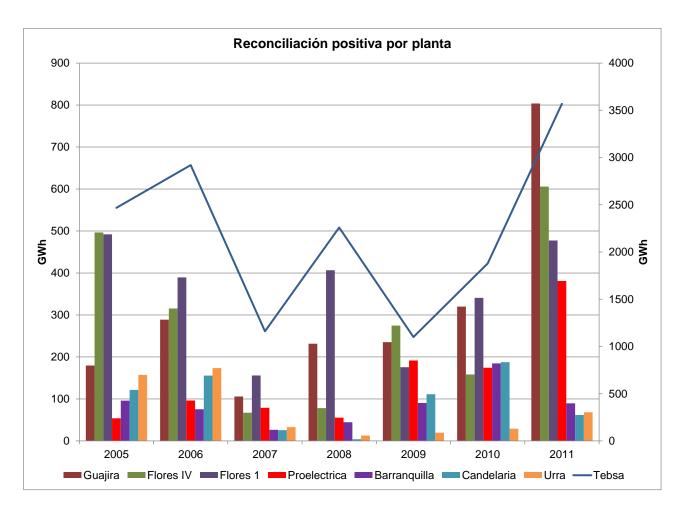


Enlace	2008	2009	2010	2011	2012	Total	
Cerromatoso - San Carlos 1 500 kV	3	3	3			9	
Cerromatoso - Porce III 1 500 kV			1	5	1	7	Ш,
Porce III - San Carlos 1 500 kV				4		4	<u> </u>
Cerromatoso - Primavera 500 kV			1		1	2	
Copey - Ocaña 500 kV			1			1	\rightarrow



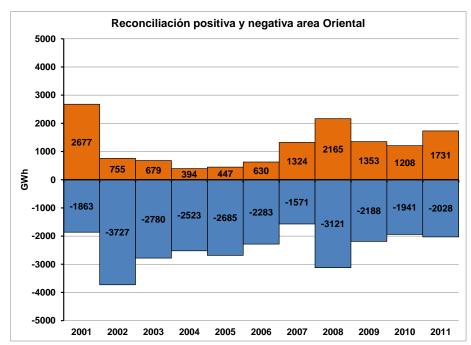
Planta	Facha	Tiempo de aviso		A
	Fecha	Anterior	Nuevo	Acuerdo
Merilectrica		2	6	475
Flores 1	10 de marzo de 2010	2		
Flores 2	10 de iliaizo de 2010	1		
Flores 3		2		
Termocandelaria 1	11 de mayo de 2010	2.33		486
Termocandelaria 2	11 de mayo de 2010	2.33		
Prolectrica1	14 de julio de 2010	2		500
Prolectrica 2	14 de juilo de 2010	2		

Tiempos de aviso superior a 6 horas en todas las plantas del área Caribe con excepción de Urra y Tebsa.



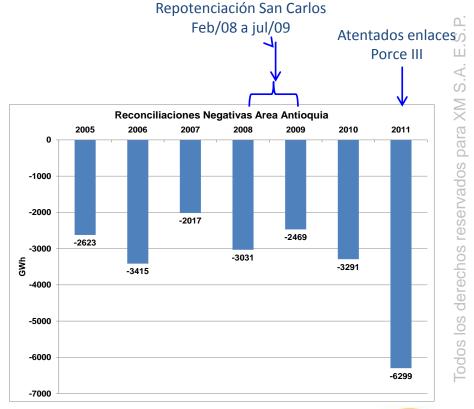
Curva Acuerdo CNO 389

- Por agotamiento en la transformación de Bolívar 220/66 kV, se requiere la generación de Proelectrica para cubrir el disparo de 🗓 de ♂ transformador un Ternera 220/66 kV.
- Por agotamiento de transformación 220/110 kV y de la red de 110 KV, requiere se una generación mínima en la red de 110 kV entre Tebsa, 🖔 Flores y Barranquilla.


Las causas identificadas para el incremento en la generación fuera de mérito entre los años 2009 y el 2011 son:

- Reactivación de los atentados terroristas sobre los enlaces entre el interior y la costa.
- Aumento generación de seguridad requerida por restricciones en el STR.
- Impacto sobre el límite de intercambio por los circuitos atentados.
- Reserva requerida en cumplimiento del Acuerdo CNO 389.
- Armonización de los tiempos de aviso de las térmicas con los tiempos de renominación del gas.
- Reactivación exportaciones a Venezuela a partir del 2011 (100 GWh).

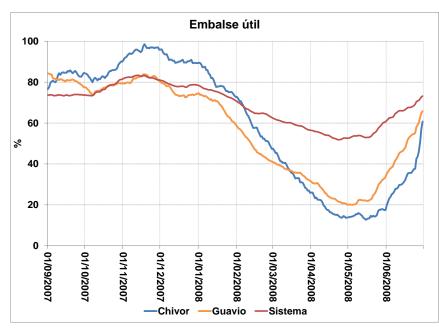
Generación Fuera de Mérito Oriental

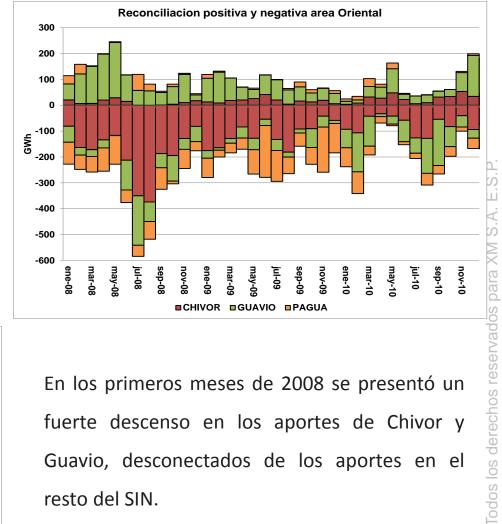


Repotenciación Chivor: ene/08 - jul/09

- Mayor número de unidades.
- Generación en 115 kV.
- Menor límite de importación.
- Techo a la generación de Chivor.

Proyectos expansión:


- Proyecto Bacatá 500 kV Dic/06
- Compensación Área Oriental nov/04, jun/06, nov/06.



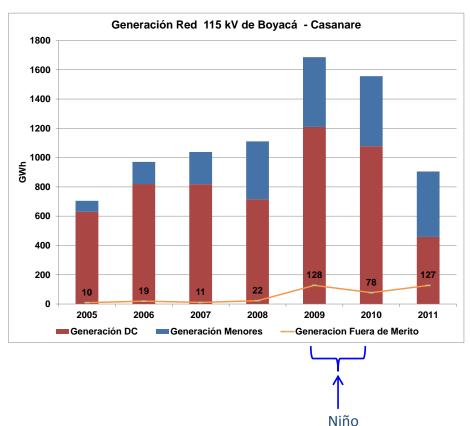
Generación Fuera de Mérito Oriental

En los primeros meses de 2008 se presentó un fuerte descenso en los aportes de Chivor y Guavio, desconectados de los aportes en el resto del SIN.


Generación Fuera de mérito Oriental

- Por ser un área predominantemente hidráulica, es normal que la generación requerida en el área se encuentre en mérito.
- Entre el 2008 y mediados de 2009 se adelantaron los trabajos de repotenciación de Chivor que exigieron una mayor generación de seguridad en el área.
- En los primeros meses de 2008 se presentaron bajos aportes en los embalses del área oriental, mientras los aportes del SIN permanecían por encima de la media.
- El incremento en los atentados a partir del año 2010 sobre los circuitos San Carlos Porce III y Porce III- San Carlos 500 kV, generan un atrapamiento de energía en el área Antioquia, la cual en parte es reemplazada con energía del área Oriental.

Generación Fuera de mérito Nordeste


Proyectos expansión:

- Transformador Ocaña 500/220
 kV. Mar/07
- Condensadores Belén. Nov/04¹
- SVC Oxy. Ene/08

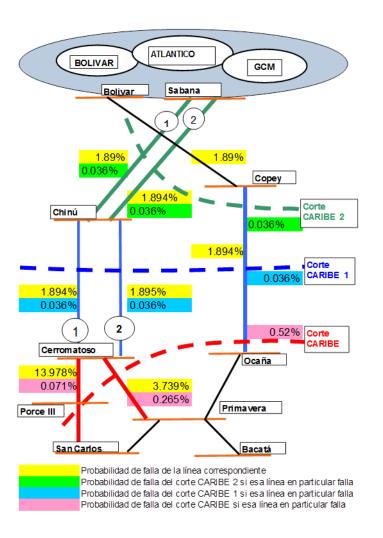
Generación Fuera de mérito Nordeste

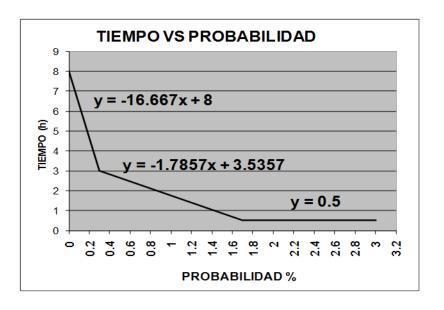
Reactivación exportaciones a Venezuela enlace Corozo – San Mateo 230 kV. Por agotamiento en la transformación 230/115 kV de Paipa, se ha incrementado la generación fuera de mérito en las plantas aguas abajo de Paipa 115 kV, Paipa 1, 2 y 3 y Termoyopal 2.

(C)

Generación Fuera de mérito Nordeste

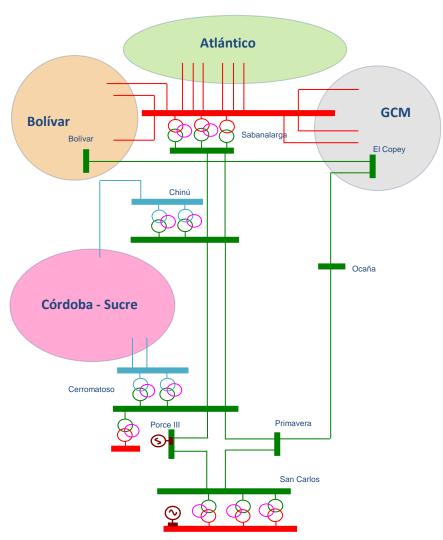
- Por ser un área con generación térmica, ante hidrologías altas como las presentadas en los dos últimos años, es normal que las generaciones de seguridad requeridas para el soporte de tensión en el área correspondan a generación fuera de mérito.
- A pesar de que se han adelantado varios proyectos, que han impactado favorablemente los requerimientos de generación del área, el crecimiento de la demanda ha generado que los requerimientos de GS no desaparezcan.
- Para cubrir la contingencia del transformador de 180 MVA de Paipa, al cual dejaría sin servicio los departamentos de Boyacá, Casanare y parte de Santander, se ha incrementado la generación fuera de mérito en las plantas de Paipa 1, 2 y 3 y Termoyopal 2.
- La reactivación de las exportaciones por el enlace Corozo San Mateo 230 kV, es otra de las causas del incremento presentado en los últimos años.





Aplicación Acuerdo CNO 389

Reserva operativa – Acuerdo CNO 389


junio 04 a 10 de 2012

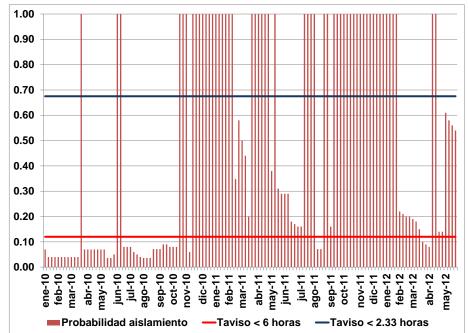
Análisis estadístico de indisponibilidades

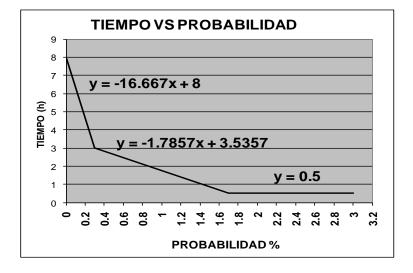
Eventos en circuitos a 500 kV

Circuito	2007	2008	2009	2010	2011	2012	Total
BOLIVAR - EL COPEY 1 500 KV	2	1					3
CERROMATOSO - CHINU 1 500 kV	1	1	1				3
CERROMATOSO - CHINU 2 500 kV	1		1				2
CERROMATOSO - PORCE III 1 500 kV				1	5	3	9
CERROMATOSO - PRIMAVERA 1 500 KV	10	3		3	2	2	20
CERROMATOSO - SAN CARLOS 1 500 kV	5	5	3	4			17
EL COPEY - OCAÑA 1 500 KV	1			1	1	1	4
OCAÑA - PRIMAVERA 1 500 KV	3	1	3	2			9
PORCE III - SAN CARLOS 1 500 kV					5		5
PRIMAVERA - SANCARLOS 1 500 KV	1			1			2
SABANALARGA - CHINU 1 500 kV	1		1		1	1	4
SABANALARGA - CHINU 2 500 kV	2		2				4
Total	27	11	11	12	14	7	82

Salidas forzadas por "AMI"

Circuito	2008	2009	2010	2011	2012	Total
CERROMATOSO - PORCE III 1 500 kV			1	5	1	7
CERROMATOSO - PRIMAVERA 1 500 KV			1		1	2
CERROMATOSO - SAN CARLOS 1 500 kV	3	3	3			9
EL COPEY - OCAÑA 1 500 KV			1			1
PORCE III - SAN CARLOS 1 500 kV				4		4
Total	3	3	6	9	2	23

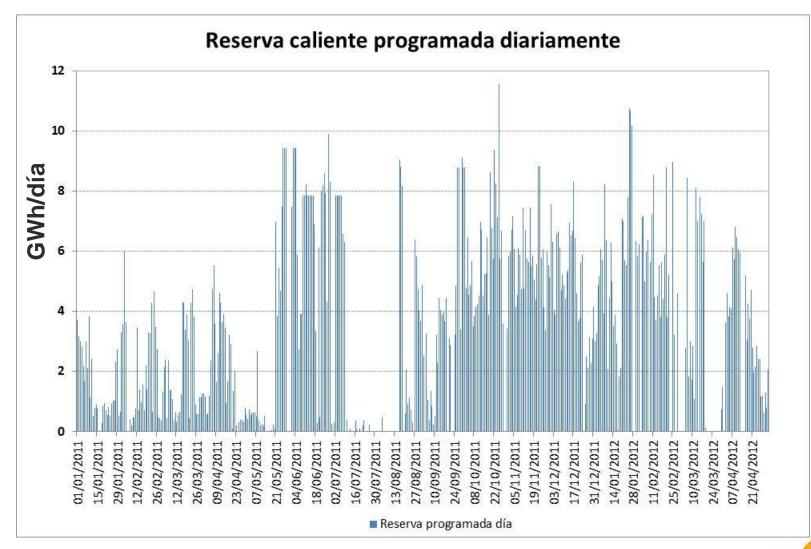



Generación Fuera de Mérito Caribe

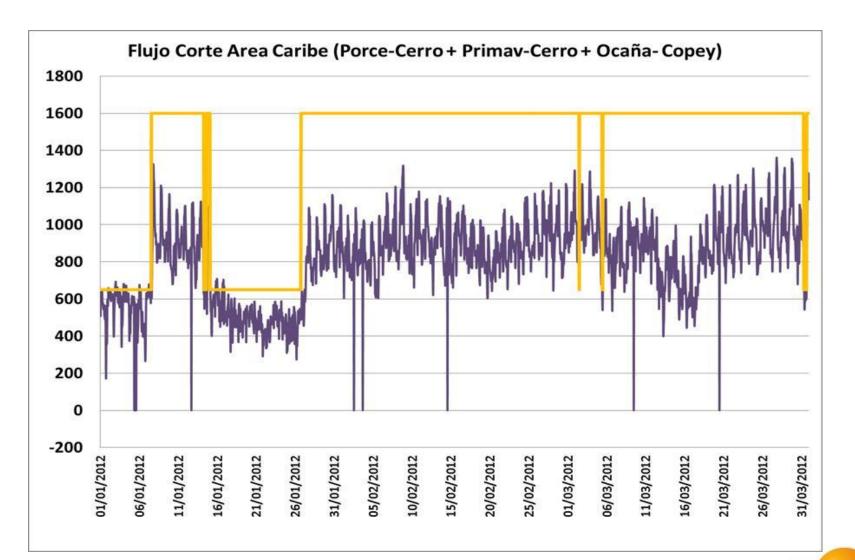
Dianta	Fecha	Tiempo de	Annanda		
Planta	recna	Anterior	Nuevo	Acuerdo	
Merilectrica		2			
Flores 1	10 de marzo de 2010	2	6	475	
Flores 2	10 de maizo de 2010	1			
Flores 3		2			
Termocandelaria 1	11 de mayo de 2010	2.33		486	
Termocandelaria 2	11 de mayo de 2010	2.33			
Prolectrica1	14 de julio de 2010	2		500	
Prolectrica 2	14 de julio de 2010	2		500	

Tiempos de aviso superior a 6 horas en todas las plantas del área Caribe con excepción de Urra y Tebsa.

Curva Acuerdo CNO 389



filial de isa


Reserva caliente

Todos los derechos reservados para XM S.A. E.S.P.

Comportamiento real del intercambio

filial de isa


Análisis

Estadísticamente, en los últimos 5 años los dos eventos con mayor cercanía entre uno y otro se presentó el 25 de septiembre de 2010 (24 horas y 47 minutos). El 24 de septiembre a las 18:11 hora se abrió el circuito San Carlos — Cerro, por expansión (entrada de la S/E Porce III) y el 25 de septiembre se presentó disparo por descarga atmosférica del circuito Primavera — Cerromatoso.

Análisis

En el evento del 9 de octubre de 2010, se llegó al nuevo límite seguro en aproximadamente 11 horas. Sin embargo, en algunos periodos del día siguiente no se logró este valor.

Análisis

En el evento del 2 de abril de 2012, se llegó al nuevo límite seguro en aproximadamente una hora. Sin embargo, en los primeros periodos del día siguiente (5 periodos) no se logró este valor.

Conclusiones y Recomendaciones

- Las estadísticas muestran que, bajo las condiciones de red actuales, no se ha presentado la condición de aislamiento para lo cual se diseño el Acuerdo CNO 389.
- Bajo las condiciones actuales, el Acuerdo CNO 389 no garantiza llegar a los limites seguros ante falla en uno de los enlaces hacia la Costa, para lo cual fue diseñado.
- Se recomienda derogar el Acuerdo CNO 389, dado que no se garantiza que la recuperación de la transferencia al límite de intercambio seguro ante N-1, para lo cual fue diseñado.
- Solicitar al SEE que analice esta problemática y recomiende las alternativas que permitan tomar las acciones necesarias para llevar al SIN a un punto de operación seguro usando los recursos disponibles y los servicios asociados a la generación de energía.

Varios

Lecciones aprendidas Cumbre de las Américas

Antecedentes

- La SSPD solicitó a las empresas del sector energético, relacionadas con la prestación del servicio de energía eléctrica en la Costa Atlántica, coordinar las acciones requeridas durante la Cumbre de Las Américas, que se realizaría en Cartagena el 13, 14 y 15 de abril.
- Se creó un Comité de administración de Riesgos para la Cumbre de las Américas, coordinado por XM.
- Se definieron los objetivos del comité y se estructuró definiendo diferentes frentes de trabajo.

Actores

XM convocó a los diferentes agentes del sector energético que tienen influencia en Bolívar.

En algunos temas puntuales se invitó a los demás agentes que tienen activos en el área Caribe. (Restablecimiento)

Riesgos identificados

Deficiencias en la infraestructura eléctrica

Inadecuada ajuste y coordinación de protecciones y ESPS

Obsolescencia de equipos y operación cercana a los limites operativos en la red eléctrica

Fallas en el análisis del mediano y corto plazo por falta de calidad en los insumos

infraestructura en el sistema de suministro y transporte de gas natural y otros Inadecuado mantenimiento de equipos por parte de terceros Indisponibilidad intempestiva de equipos para la operación, transmisión y generación

Alteración del orden público

Atentados a la infraestructura energética (antes y durante el evento)

Riesgos identificados

Deficiencias en la Operación

Indisponibilidad de los canales de comunicación entre XM y los agentes del área Inadecuada coordinación de planes de contingencia (para fallas técnicas y de infraestructura física)

Errores y omisiones por parte del personal de XM Impericia, error o desatención de las recomendaciones de los demás operadores diferentes a XM

Inadecuado manejo de la información confidencial o crítica Inadecuado e inoportuno plan de comunicaciones ante eventos

Inadecuada comunicación y divulgación de información

Factores de éxito

Compromiso con el país dada la importancia del evento.

Estrecha coordinación, participación y apoyo de los organismos del sector.

(Institucionalidad)

Todas las
actividades se
realizaron
dentro del actual
marco
regulatorio

Lecciones Aprendidas

Correcto flujo de comunicación entre el coordinador del comité y las diferentes empresas.

Participación en cada grupo de trabajo, únicamente de las empresas que tenían que ver con el tema definido.

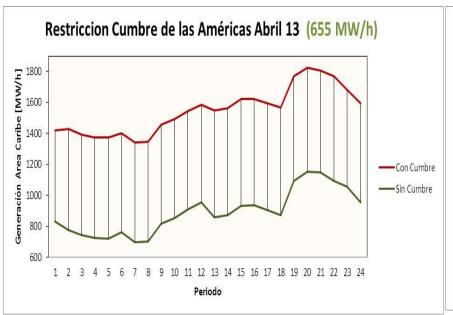
Se definió un solo vocero por empresa

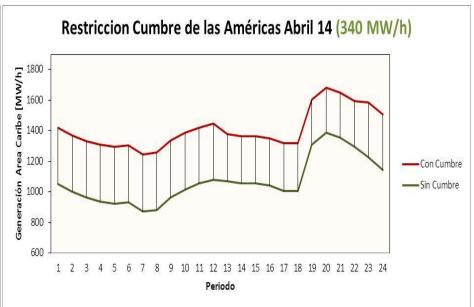
Correcto flujo de comunicación entre los diferentes grupos de trabajo.

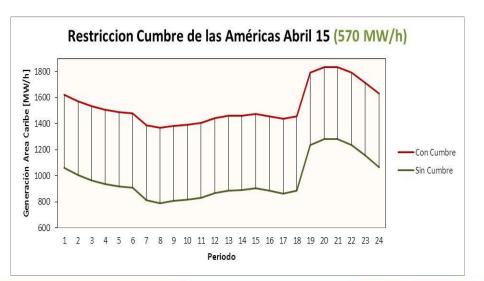
Capacitación a los operadores para que todos tuvieran la misma información

Seguimiento continuo a los compromisos adquiridos.

Respeto por el rol de cada actor.


Identificación de riesgos de cada uno de los actores y planes de contingencia para minimizarlos.


Prudencia del coordinador en algunos temas que no se conocían.



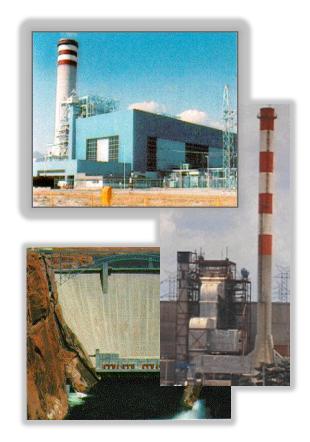
Balance de generación área Caribe en Cumbre

El valor de energía corresponde al valor promedio horario por período durante el día

Mantenimientos gas - Chuchupa

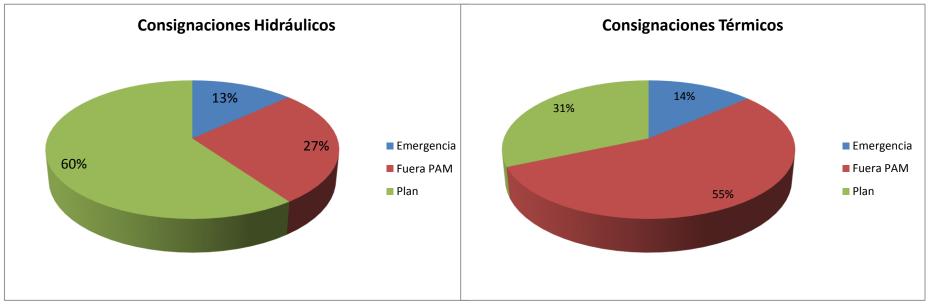
Chevron tiene programados los días 1 y 2 de agosto trabajos en Chuchupa, durante los cuales se reducirá la disponibilidad de 708 GBTUD a 211 GBTUD. Se solicitó realizar estos trabajos en fin de semana. 4 y 5 o 19 y 20 de agosto. Pendiente confirmación.

Con el fin de minimizar los riegos en la atención de la demanda del sector eléctrico de la costa durante el trabajo, se recomienda:


- Maximizar la disponibilidad de las centrales hidráulicas y térmicas a carbón.
- Contar con disponibilidad de combustibles líquidos y carbón en las plantas duales.
- No programar pruebas de generación.
- No realizar intervenciones en los enlaces entre el interior y la costa, ni en la red de la costa que requiera generación de seguridad.

Generadores Térmicos vs Hidráulicos

Consignaciones			
Emergencia	48		
Fuera PAM	118		
Plan	196		
Total	362		



Е.S. Р. Todos los derechos reservados para XM S.A.

Generadores Térmicos vs Hidráulicos

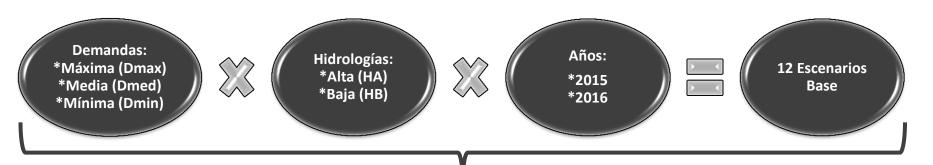
Consignaciones					
	Hidráulicos	Térmicos	Total		
Emergencia	38	10	48		
Fuera PAM	78	40	118		
Plan	173	23	196		
Total	289	73	362		

Antecedentes

Febrero de 2009 • La UPME emite concepto de viabilidad técnica para el Enlace Internacional Colombia Panamá a través de un enlace HVDC con una capacidad de 300MW

Abril de 2010 • ISA presenta ante la UPME actualización del estudio de conexión con una capacidad de 600MW → Años 2013 y 2016 se pueden transportar 600MW sin problemas de los equipos o en los perfiles de tensión.

Mayo de 2010 • XM en el IPOELP encuentra que para una carga de 600MW se afecta necesariamente el perfil de tensión y limita el valor del corte a la costa de 1600MW actual, generando restricciones adicionales a la red colombiana cubiertas con generación de seguridad dentro del área.


Noviembre de 2010 La UPME emite concepto de viabilidad técnica para el Enlace Internacional Colombia Panamá a través de enlace HVDC con una capacidad de 600MW → No se detectan necesidades de expansión en el STN, sin embargo, sin Tebsa y Flores sería necesario programar generación de seguridad ocasionando restricciones al Sistema

Abril de 2011 • La CREG publicó la resolución CREG 055-2011 en la cual mediante el artículo 2 establece que los operadores de red de cada país deben definir la capacidad máxima del enlace Internacional Colombia-Panamá.

Escenarios considerados

En cada uno de estos escenarios se analiza un intercambio Colombia –

Panamá de:

OMW

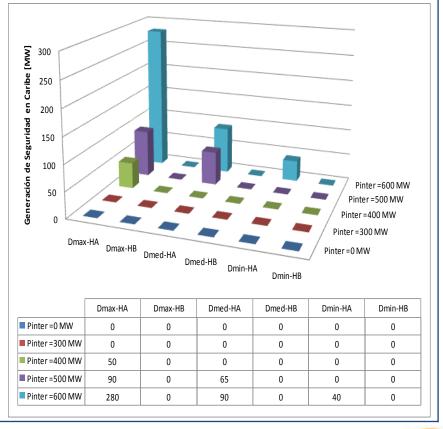
±300MW

±400MW

±500MW

±600MW

Análisis y Resultados


Con Interconexión Colombia – Panamá exportando

Solución con Generación de Seguridad Adicional en Caribe

Año 2015

Año 2016

Conclusiones y recomendaciones

- ➢ Recopilando todos los elementos anteriores, se tiene que la Capacidad Máxima de Exportación (+) y de Importación (-) desde Colombia es de ±600MW, considerando las condiciones de calidad y seguridad del sistema eléctrico colombiano en los años 2015 y 2016, y teniendo en cuenta que es necesario programar generación de seguridad adicional en Caribe especialmente en condiciones de exportaciones a Panamá a partir de 400MW.
- ➤ Se recomienda evaluar la posibilidad de instalar interruptores en los reactores de línea de la subestación Chinú 500kV, debido a que con estos interruptores sería posible disponer de estos reactores para maniobrarlos y permitir llevar al SVC a su punto de flotación de manera más fácil para el operador tanto en estado estable como en contingencia del sistema.
- ➢ En reunión del 19 de Agosto de 2011, ETESA de Panamá y XM de Colombia se reunieron bajo las disposiciones de las reglamentaciones de ambos países. En esta reunión ETESA presentó como máximo valor de transferencia a importar desde Colombia en el 2015 − 2016 hasta 300MW. Al comparar los resultados de ambos operadores se estableció que la capacidad máxima de intercambio en ambos sentidos para la fecha de entrada del proyecto es de 300MW.

TODOS LOS DERECHOS RESERVADOS PARA XM S.A. E.S.P.

2012