

ANEXO

A.1. Central Darío Valencia Samper – Unidad 1

1. Parámetros del Generador

TAG	Descripción	Valor	Unidad
Sn	Potencia aparente nominal	62.5	MVA
Vn	Tensión nominal	13.8	KV
Fp	Factor de potencia nominal	0.8	pu
Xd	Reactancia sincrónica eje directo	1.45	pu
Χq	Reactancia sincrónica eje cuadratura	0.718	pu
Xd′	Reactancia transitoria eje directo	0.315	pu
Td0′	Constante de tiempo transitoria de eje directo	4.99	S
Xd"	Reactancia subtransitoria eje directo	0.2	pu
Xq"	Reactancia subtransitoria eje cuadratura	0.22	pu
Td0"	Constante de tiempo subtransitoria de eje directo	0.035	S
Tq0"	Constante de tiempo subtransitoria de eje cuadratura	0.064	S
ΧI	Reactancia de dispersión	0.08	pu
S1.0	Parámetro de saturación a ETERM = 1.0 pu	0.16	pu
S1.2	Parámetro de saturación a ETERM = 1.2 pu	0.26	pu
IFDbas	Corriente de campo base	323	Α
TG	Tipo de Generador (Liso / Saliente)	Saliente	-
TSAT	Tipo de saturación	Cuadrática	-
IFDnom	Corriente de campo nominal	710	Α
IFDmin	Corriente de campo mínima	142	Α
Н	Constante de Inercia	3.17	S

Tabla 1. Parámetros del Generador

2. Modelo del Sistema de Excitación

2.1 Modelo del AVR

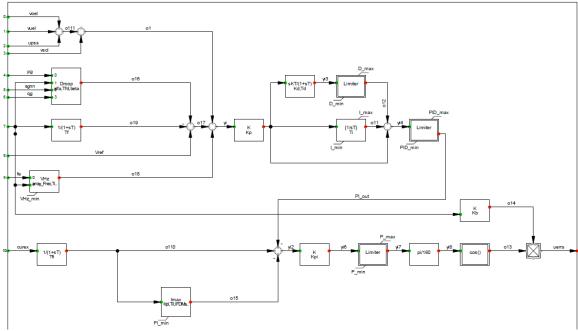


Figura 1. Diagrama de bloques del AVR

	Parameter
Tf Cte. de tiempo medicion V [s]	0,01
TIVHz Constante de tiempo I VHz [seg]	0,9375
Tfi Cte. de tiempo medicion I [s]	0,
Kp Ganancia proporcional PID tension [pu]	23,
Kb Ganancia puente [pu]	5,586
Kpi Ganancia proporcional P corriente [pu]	320,
Ti Cte. de tiempo integral PID tension [pu]	0,7
Kd Ganancia derivativa PID tension [pu]	0,
Td Cte. de tiempo derivativa PID tension [pu]	0,0073
Kpl Ganancia proporcional Pl Imax [pu]	4,
Til Constante de tiempo PI Imax [seg]	0,06
IFDMax Limite instantaneo de corriente de campo [pu]	2.41818
alfa Droop P [pu]	0,
Tfd Constante de tiempo Droop [seg]	0,002
beta Droop Q [pu]	-0,0498
VHz_min Limite inferior VHz [pu]	-0,9
D_min Lim. inf. derivativo [pu]	0,
PID_min Lim. inf. PID [pu]	-1600,
P_min Angulo minimo de disparo [*]	4,55
I_min Lim. inf. integral [pu]	-20,
Pl_min Limite Pl Imax [pu]	-71,2
D_max Lim. sup. derivativo [pu]	2,1959
PID_max Lim. sup. PID [pu]	2,1959
P_max Angulo maximo de disparo [*]	166,5
I_max Lim. sup. integral [pu]	2,1959

Tabla 2. Parámetros del AVR

2.2 Modelo del limitador V/Hz

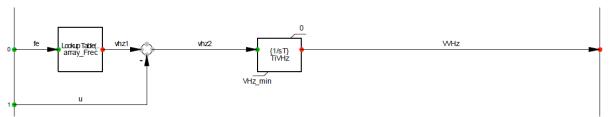


Figura 2. Diagrama de bloques del Limitador V/Hz

	Frec_x	Frec_y
Size	3,	0,
1	0,	0,
2	1,	1,08
3	2,	1,08

Tabla 3. Parámetros del Limitador V/Hz

2.3 Modelo del OEL Instantáneo

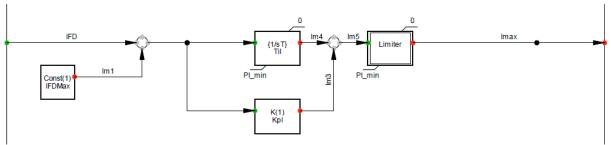


Figura 3. Diagrama de bloques del OEL instantáneo

2.4 Modelo del OEL Temporizado

	Parameter
▶T Cte. de temporizacion [s]	14,99
IPMAXV Umbral de corriente OEL temporizado [pu]	2.3
Ti Ganancia OEL temporizado [pu]	100,
IPZONE Histeresis OEL temporizado [pu]	0,99
y_min Limite inferior OEL temporizado [pu]	-10,

Tabla 4. Parámetros del OEL temporizado

^{*}Los parámetros se encuentran también en la Tabla 2 - Parámetros del AVR.

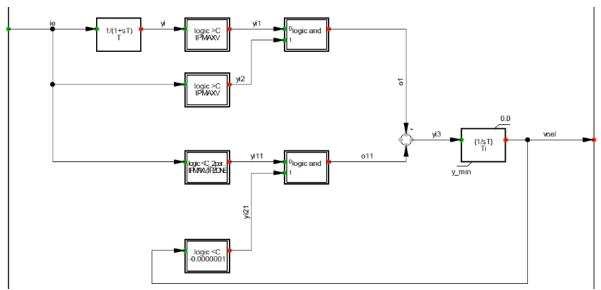


Figura 4. Diagrama de bloques del OEL temporizado

2.5 Modelo del UEL

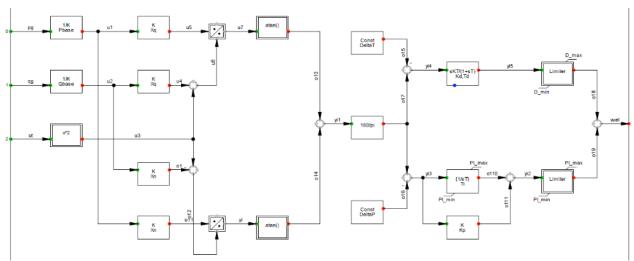


Figura 5. Diagrama de bloques del UEL

	Parameter
►Pbase Potencia Activa base [MW]	62,5
Qbase Potencia Reactiva base [MVAr]	62,5
Xq Reactancia en cuadratura [pu]	2.97
Xn Reactancia de vinculacion [pu]	0,1001
Kd Ganancia derivativa UEL [pu]	1,5
Td Cte. de tiempo derivativa UEL [pu]	0,1001
Ti Cte. de tiempo integral UEL [pu]	200,
Kp Ganancia proporcional UEL [pu]	0,001001
DeltaP Angulo estacionario limite [*]	- 79.5
DeltaT Angulo temporal limite [*]	- 70.0
D_min Lim. inf. derivativo [pu]	0,
Pl_min Lim. inf. Pl [pu]	0,
D_max Lim. sup. derivativo [pu]	14,
Pl_max Lim. sup. Pl [pu]	14,

Tabla 5. Parámetros del UEL

3. Modelo del PSS

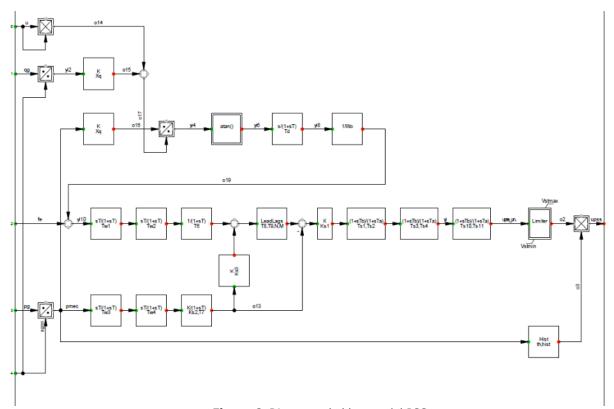


Figura 6. Diagrama de bloques del PSS

	Parameter
►Tw1 1st Washout 1th Time Constant [s]	5,
Tw2 1st Washout 2th Time Constant [s]	5,
Td Cte de tiempo derivador slip [s]	0,02
T6 1st Signal Transducer Time Constant [s]	0,02
Tw3 2nd Washout 1th Time Constant [s]	5,
Tw4 2nd Washout 2th Time Constant [s]	5,
Ks2 2nd Signal Transducer Factor [pu]	0,7837
T7 2nd Signal Transducer Time Constant [s]	5,
Ks3 Washouts Coupling Factor [pu]	1,
Ks1 PSS Gain [pu]	1,001
Xq Reactancia para slip [pu]	0,6602
Ts1 1st Lead-Lag Derivative Time Constant [s]	0,0601
Ts2 1st Lead-Lag Delay Time Constant [s]	0,0103
Ts3 2nd Lead-Lag Derivative Time Constant [s]	0,0601
Ts4 2nd Lead-Lag Delay Time Constant [s]	0,0103
T8 Ramp Tracking Filter Deriv, Time Constant [s]	0,4
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
N Ramp Tracking Filter [-]	1,
M Ramp Tracking Filter [-]	4,
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,21
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,71
th Umbral de activacion PSS [pu]	0,5
hist Histeresis de activacion PSS [pu]	0,05
Vstmin Controller Minimum Output [pu]	-0,1001
Vstmax Controller Maximum Output [pu]	0,1001

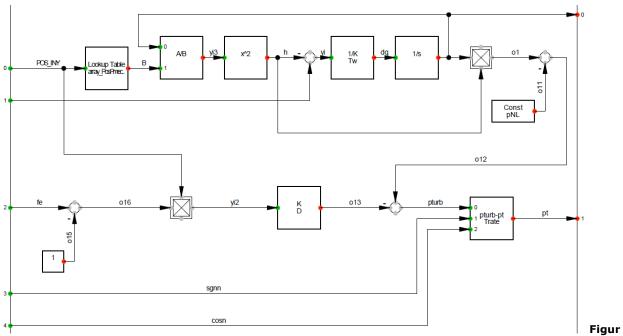
Tabla 6. Parámetros del PSS

4. Modelo de las Conducciones Hidráulicas

Figura 7. Diagrama de bloques de la Conducción

Parameter
0,04
50,
0,04
50,
0,04
50,
2,89
3,0627
0,025
2,89
3,0627
0,025
454,77
1,9269
0,025

Tabla 7. Parámetros de la Conducción


5. Modelo de la Turbina

	PosPmech_x	PosPmech_y
►Size	15,	15,
1	0,	0,
2	0,05	0,1056
3	0,1	0,2064
4	0,2	0,3743
5	0,3	0,528
6	0,33	0,576
- 7	0,4	0,6816
8	0,5	0,7792
9	0,55	0,8448
10	0,59	0,8851
11	0,65	0,9456
12	0,7	0,96
13	0,8	0,9696
14	0,9	0,9792
15	1,	0,9888

Tabla 8. Característica de la Válvula

Trate Potencia nominal de turbina [MW]	50,
pNL Potencia de vacío [pu]	0,04
Tw Constante de tiempo del agua [seg]	0,012
D Constante de turbina [pu]	0,

Tabla 9. Parámetros de la Turbina

a 8. Diagrama de bloques de la Turbina

6. Modelo del Regulador de Velocidad

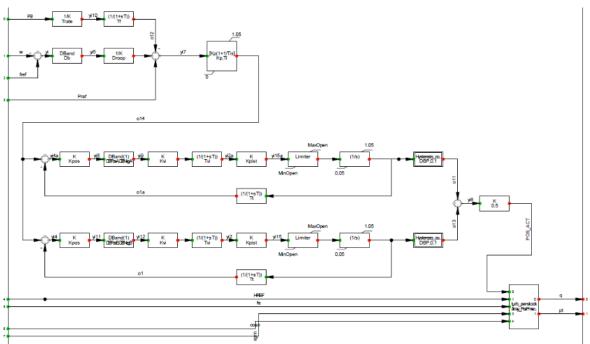


Figura 9. Diagrama de bloques del Regulador de Velocidad

►Kpist Ganancia posicionador [pu]	0,02
Kpos Ganancia ctrl. de posicion [pu]	10,
Kvi Cte, valvula intermedia [pu]	2,
Tt Cte tiempo transductor de posicion [s]	0,05
Tf Cte. de tiempo filtro potencia [s]	3,5
Tvi Cte. tiempo valvula intermedia [pu]	0,8
DBP Banda muerta posicion [pu]	0,
Droop Estatismo [pu/pu]	0,043
Trate Potencia nominal de turbina [MW]	50,
DBPosA Banda Muerta Pos Agi 1 - Pos [pu]	0,
DBNegA Banda Muerta Pos Agj 1 - Neg [pu]	0,
DBPosB Banda Muerta Pos Agj 2 - Pos [pu]	0,
DBNegB Banda Muerta Pos Agj 2 - Neg [pu]	0,
Db Banda muerta frecuencia [pu]	0,0005
Kp Ganancia proporcional ctrl. potencia [pu]	0,24
Ti Cte, tiempo integral ctrl, potencia [s]	12,
Slope Rate limit Consigna Posicion [pu/s]	0,003
Start Fin Rate limit Consigna Posicion [pu]	0,2
MinOpen Lim Inf [pu]	-0,0125
MaxOpen Lim Sup [pu]	0,025

Tabla 10. Parámetros del Regulador de Velocidad

A.2. Central Darío Valencia Samper – Unidad 2

1. Parámetros del Generador

TAG	Descripción	Valor	Unida d
Sn	Potencia aparente nominal	62.5	MVA
Vn	Tensión nominal	13.8	KV
fp	Factor de potencia nominal	0.8	pu
Xd	Reactancia sincrónica eje directo	1.45	pu
Xq	Reactancia sincrónica eje cuadratura	0.718	pu
Xd'	Reactancia transitoria eje directo	0.315	pu
Td0'	Constante de tiempo transitoria de eje directo	4.99	S
Xd"	Reactancia subtransitoria eje directo	0.2	pu
Xq"	Reactancia subtransitoria eje cuadratura	0.22	pu
Td0"	Constante de tiempo subtransitoria de eje directo	0.035	S
Tq0"	Constante de tiempo subtransitoria de eje cuadratura	0.064	S
XI	Reactancia de dispersión	0.1	pu
S1.0	Parámetro de saturación a ETERM = 1.0 pu	0.16	pu
S1.2	Parámetro de saturación a ETERM = 1.2 pu	0.33	pu
IFDbas	Corriente de campo base	318	Α
TG	Tipo de Generador (Liso / Saliente)	Saliente	-
TSAT	Tipo de saturación	Cuadrática	-
IFDnom	Corriente de campo nominal	710	Α
IFDmin	Corriente de campo mínima	142	Α
Н	Constante de Inercia	3.17	S

Tabla 1. Parámetros del Generador

2. Modelo del Sistema de Excitación

2.1 Modelo del AVR

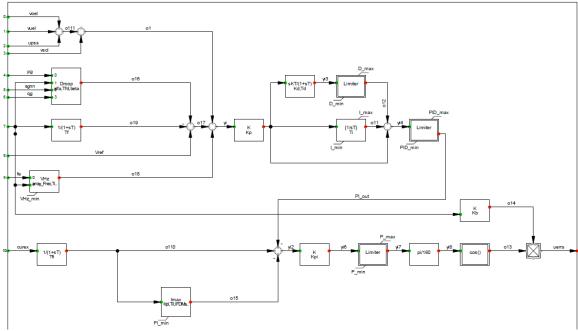


Figura 1. Diagrama de bloques del AVR

	Parameter
Tf Cte, de tiempo medicion V [s]	0,01
TMHz Constante de tiempo I VHz [seg]	0,9375
Tfi Cte, de tiempo medicion I [s]	0,
Kp Ganancia proporcional PID tension [pu]	23,
Kb Ganancia puente [pu]	5,586
Kpi Ganancia proporcional P corriente [pu]	320,
Ti Cte, de tiempo integral PID tension [pu]	0,7
Kd Ganancia derivativa PID tension [pu]	0,
Td Cte. de tiempo derivativa PID tension [pu]	0,0073
Kpl Ganancia proporcional Pl Imax [pu]	4,
Til Constante de tiempo PI Imax [seg]	0,06
IFDMax Limite instantaneo de corriente de campo [pu]	2.41818
alfa Droop P [pu]	0,
Tfd Constante de tiempo Droop [seg]	0,002
beta Droop Q [pu]	0,
VHz_min Limite inferior VHz [pu]	-0,9
D_min Lim. inf. derivativo [pu]	0,
PID_min Lim. inf. PID [pu]	-1600,
P_min Angulo minimo de disparo [*]	4,55
I_min Lim. inf. integral [pu]	-20,
PI_min Limite PI Imax [pu]	-71,2
D_max Lim. sup. derivativo [pu]	2,195
PID_max Lim. sup. PID [pu]	2,195
P_max Angulo maximo de disparo [*]	166,5
I_max Lim. sup. integral [pu]	2,195

Tabla 2. Parámetros del AVR

2.2 Modelo del limitador V/Hz

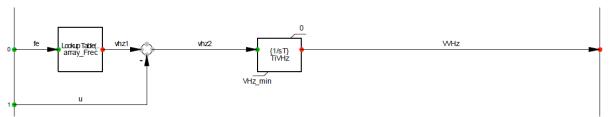


Figura 2. Diagrama de bloques del Limitador V/Hz

	Frec_x	Frec_y
Size	3,	0,
1	0,	0,
2	1,	1,08
3	2,	1,08

Tabla 3. Parámetros del Limitador V/Hz

2.3 Modelo del OEL Instantáneo

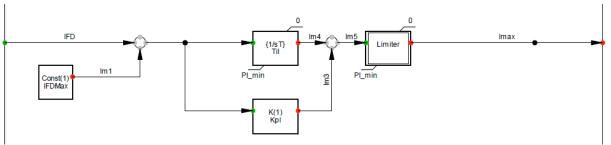


Figura 3. Diagrama de bloques del OEL instantáneo

2.4 Modelo del OEL Temporizado

	Parameter
▶T Cte. de temporizacion [s]	14,99
IPMAXV Umbral de corriente OEL temporizado [pu]	2.33
Ti Ganancia OEL temporizado [pu]	100,
IPZONE Histeresis OEL temporizado [pu]	0,99
y_min Limite inferior OEL temporizado [pu]	-10,

Tabla 4. Parámetros del OEL temporizado

^{*}Los parámetros se encuentran también en la Tabla 2 - Parámetros del AVR.

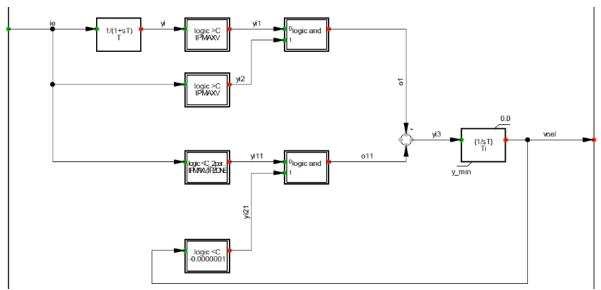


Figura 4. Diagrama de bloques del OEL temporizado

2.5 Modelo del UEL

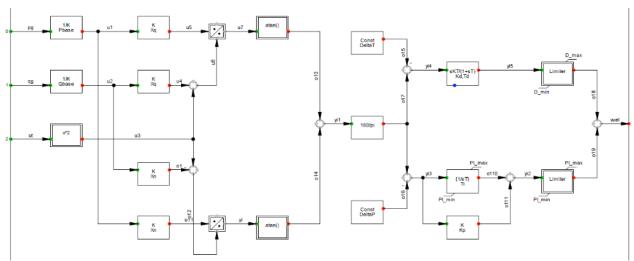


Figura 5. Diagrama de bloques del UEL

	Parameter
►Pbase Potencia Activa base [MW]	62,5
Qbase Potencia Reactiva base [MVAr]	62,5
Xq Reactancia en cuadratura [pu]	2.97
Xn Reactancia de vinculacion [pu]	0,1001
Kd Ganancia derivativa UEL [pu]	1,5
Td Cte. de tiempo derivativa UEL [pu]	0,1001
Ti Cte. de tiempo integral UEL [pu]	200,
Kp Ganancia proporcional UEL [pu]	0,001001
DeltaP Angulo estacionario limite [*]	- 79.5
DeltaT Angulo temporal limite [*]	- 70.0
D_min Lim. inf. derivativo [pu]	0,
Pl_min Lim. inf. Pl [pu]	0,
D_max Lim. sup. derivativo [pu]	14,
Pl_max Lim. sup. Pl [pu]	14,

Tabla 5. Parámetros del UEL

3. Modelo del PSS

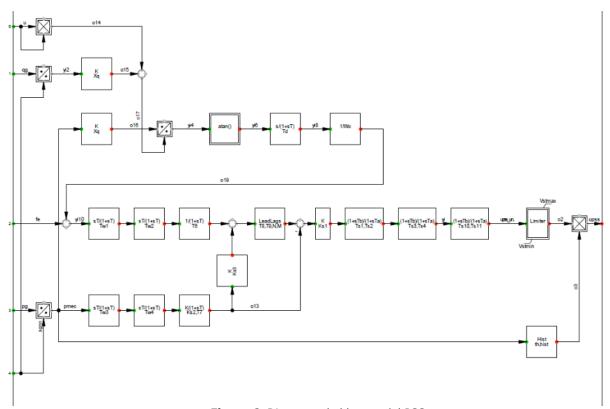


Figura 6. Diagrama de bloques del PSS

	Parameter
►Tw1 1st Washout 1th Time Constant [s]	5,
Tw2 1st Washout 2th Time Constant [s]	5,
Td Cte de tiempo derivador slip [s]	0,02
T6 1st Signal Transducer Time Constant [s]	0,02
Tw3 2nd Washout 1th Time Constant [s]	5,
Tw4 2nd Washout 2th Time Constant [s]	5,
Ks2 2nd Signal Transducer Factor [pu]	0,7837
T7 2nd Signal Transducer Time Constant [s]	5,
Ks3 Washouts Coupling Factor [pu]	1,
Ks1 PSS Gain [pu]	1,001
Xq Reactancia para slip [pu]	0,6602
Ts1 1st Lead-Lag Derivative Time Constant [s]	0,0601
Ts2 1st Lead-Lag Delay Time Constant [s]	0,0103
Ts3 2nd Lead-Lag Derivative Time Constant [s]	0,0601
Ts4 2nd Lead-Lag Delay Time Constant [s]	0,0103
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,4
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
N Ramp Tracking Filter [-]	1,
M Ramp Tracking Filter [-]	4,
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,21
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,71
th Umbral de activacion PSS [pu]	0,5
hist Histeresis de activacion PSS [pu]	0,05
Vstmin Controller Minimum Output [pu]	-0,1001
Vstmax Controller Maximum Output [pu]	0,1001

Tabla 6. Parámetros del PSS

A.3. Central Darío Valencia Samper – Unidad 5

1. Parámetros del Generador

TAG	Descripción	Valor	Unida d
Sn	Potencia aparente nominal	62.5	MVA
Vn	Tensión nominal	13.8	KV
fp	Factor de potencia nominal	0.8	pu
Xd	Reactancia sincrónica eje directo	1.509	pu
Xq	Reactancia sincrónica eje cuadratura	1.076	pu
Xd′	Reactancia transitoria eje directo	0.3	pu
Td0′	Constante de tiempo transitoria de eje directo	9.58	S
Xd"	Reactancia subtransitoria eje directo	0.23	pu
Xq"	Reactancia subtransitoria eje cuadratura	0.231	pu
Td0"	Constante de tiempo subtransitoria de eje directo	0.012	S
Tq0"	Constante de tiempo subtransitoria de eje cuadratura	0.07	S
ΧI	Reactancia de dispersión	0.207	pu
S1.0	Parámetro de saturación a ETERM = 1.0 pu	0.145	pu
S1.2	Parámetro de saturación a ETERM = 1.2 pu	0.48	pu
IFDbas	Corriente de campo base	172	Α
TG	Tipo de Generador (Liso / Saliente)	Saliente	-
TSAT	Tipo de saturación	Cuadrática	-
IFDnom	Corriente de campo nominal	710	Α
IFDmin	Corriente de campo mínima	86.5	Α
Н	Constante de Inercia	3.17	S

Tabla 1. Parámetros del Generador

2. Modelo del Sistema de Excitación

2.1 Modelo del AVR

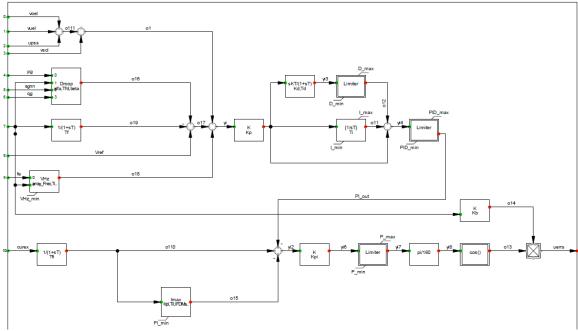


Figura 1. Diagrama de bloques del AVR

	Parameter
►Tf Cte. de tiempo medicion V [s]	0,0098
TIVHz Constante de tiempo I VHz [seg]	0,756
Tfi Cte, de tiempo medicion I [s]	0,
Kp Ganancia proporcional PID tension [pu]	79,6875
Kb Ganancia puente [pu]	6,35
Kpi Ganancia proporcional P corriente [pu]	100,
Ti Cte, de tiempo integral PID tension [pu]	1,1385
Kd Ganancia derivativa PID tension [pu]	0,
Td Cte. de tiempo derivativa PID tension [pu]	0,0073
Kpl Ganancia proporcional Pl Imax [pu]	4.
Til Constante de tiempo PI Imax [seg]	0,0601
IFDMax Limite instantaneo de corriente de campo [pu]	2.65
alfa Droop P [pu]	0,
Tfd Constante de tiempo Droop [seg]	0,002
beta Droop Q [pu]	0,
VHz_min Limite inferior VHz [pu]	-0,9
D_min Lim. inf. derivativo [pu]	0,
PID_min Lim. inf. PID [pu]	-1600,
P_min Angulo minimo de disparo [*]	4,55
I_min Lim. inf. integral [pu]	-20,
Pl_min Limite Pl Imax [pu]	-71,2
D_max Lim. sup. derivativo [pu]	4,1237
PID_max Lim. sup. PID [pu]	4,1237
P_max Angulo maximo de disparo [*]	166,5
I_max Lim. sup. integral [pu]	4,1237

Tabla 2. Parámetros del AVR

2.2 Modelo del limitador V/Hz

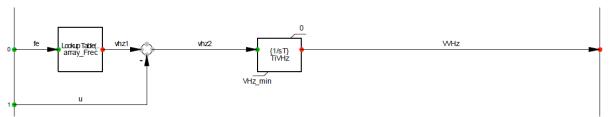


Figura 2. Diagrama de bloques del Limitador V/Hz

	Frec_x	Frec_y
Size	3,	0,
1	0,	0,
2	1,	1,08
3	2,	1,08

Tabla 3. Parámetros del Limitador V/Hz

2.3 Modelo del OEL Instantáneo

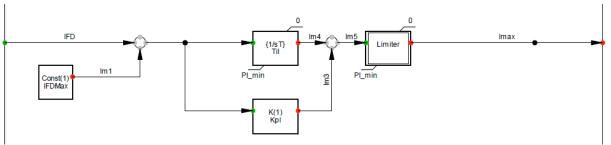


Figura 3. Diagrama de bloques del OEL instantáneo

2.4 Modelo del OEL Temporizado

	Parameter
►T Cte. de temporizacion [s]	14,99
IPMAXV Umbral de corriente OEL temporizado [pu]	2.62
Ti Ganancia OEL temporizado [pu]	100,
IPZONE Histeresis OEL temporizado [pu]	0,99
y_min Limite inferior OEL temporizado [pu]	-10,

Tabla 4. Parámetros del OEL temporizado

^{*}Los parámetros se encuentran también en la Tabla 2 - Parámetros del AVR.

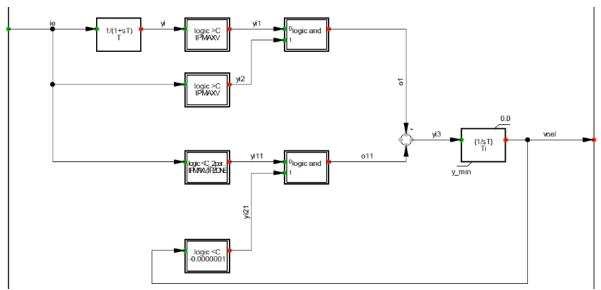


Figura 4. Diagrama de bloques del OEL temporizado

2.5 Modelo del UEL

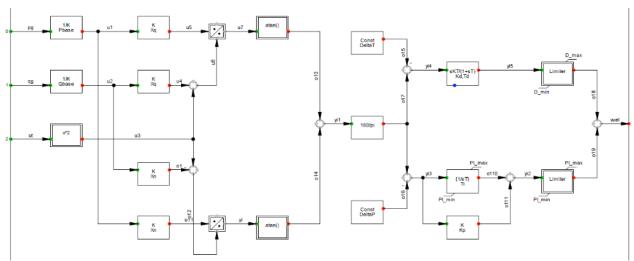


Figura 5. Diagrama de bloques del UEL

▶Pbase Potencia Activa base [MW]	62,5
Qbase Potencia Reactiva base [MVAr]	62,5
Xq Reactancia en cuadratura [pu]	2.7433
Xn Reactancia de vinculacion [pu]	0,1001
Kd Ganancia derivativa UEL [pu]	0,5
Td Cte. de tiempo derivativa UEL [pu]	0,1001
Ti Cte. de tiempo integral UEL [pu]	600,
Kp Ganancia proporcional UEL [pu]	0,0008
DeltaP Angulo estacionario limite [*]	88.7
DeltaT Angulo temporal limite [*]	90
D_min Lim. inf. derivativo [pu]	0,
Pl_min Lim. inf. Pl [pu]	0,
D_max Lim. sup. derivativo [pu]	14,
Pl_max Lim. sup. Pl [pu]	14,

Tabla 5. Parámetros del UEL

3. Modelo del PSS

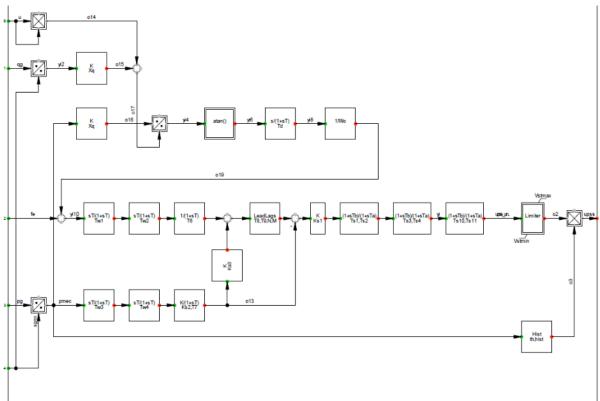


Figura 6. Diagrama de bloques del PSS

	Parameter
►Tw1 1st Washout 1th Time Constant [s]	5,
Tw2 1st Washout 2th Time Constant [s]	5,
Td Cte de tiempo derivador slip [s]	0,02
T6 1st Signal Transducer Time Constant [s]	0,02
Tw3 2nd Washout 1th Time Constant [s]	5,
Tw4 2nd Washout 2th Time Constant [s]	5,
Ks2 2nd Signal Transducer Factor [pu]	0,7837
T7 2nd Signal Transducer Time Constant [s]	5,
Ks3 Washouts Coupling Factor [pu]	1,
Ks1 PSS Gain [pu]	3,003
Xq Reactancia para slip [pu]	0,6602
Ts1 1st Lead-Lag Derivative Time Constant [s]	0,0601
Ts2 1st Lead-Lag Delay Time Constant [s]	0,0103
Ts3 2nd Lead-Lag Derivative Time Constant [s]	0,1602
Ts4 2nd Lead-Lag Delay Time Constant [s]	0,5601
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,4
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
N Ramp Tracking Filter [-]	1,
M Ramp Tracking Filter [-]	4,
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,46
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,3101
th Umbral de activacion PSS [pu]	0,5
hist Histeresis de activacion PSS [pu]	0,05
Vstmin Controller Minimum Output [pu]	-0,1001
Vstmax Controller Maximum Output [pu]	0,1001

Tabla 6. Parámetros del PSS