

Anexo Parámetros Técnicos Unidad CT2 - Flores IV

Figura 1. Parámetros Modelo Generador CT2 - Flores IV

Automatic Voltage Regulator Prismic A32:

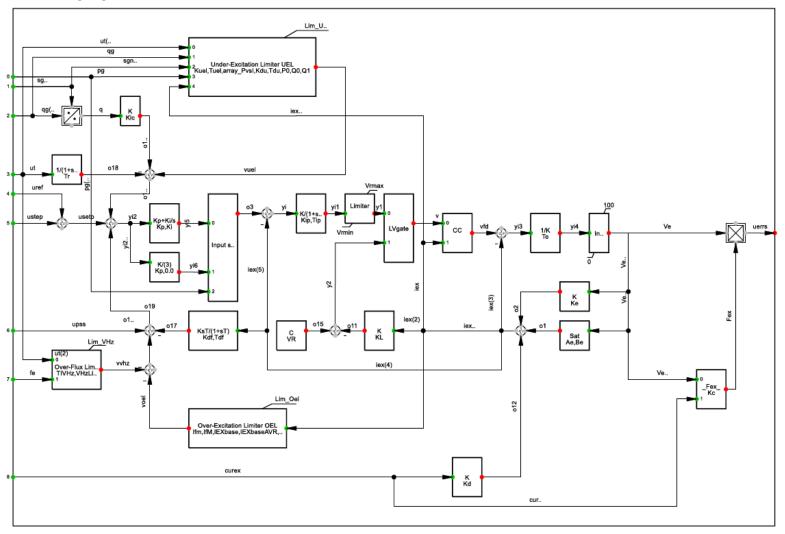


Figura 2: Diagrama de Bloques del AVR.

	Parameter	
Kdf Ganancia proporcional de realimentacion [pu]	0,011	
Tdf Cte de tiempo de realimentacion [seg]	0,75	
Kip Ganancia del puente [pu]	14,5	
Tip Cte de tiempo del puente [seg]	0,	
Tr Cte. de tiempo del transductor [seg]	0,	
Ke Ganancia de la excitatriz [pu]	1,	
KL Reactancia del puente [pu]	0,3	
Kd Reaccion de armadura [pu]	0,55	
Klc Ganancia compensacion de reactivo [pu]	-0,04	
Ae Parametro de saturacion excitatriz [pu]	0,015	
Be Parametro de saturacion excitatriz [pu]	0,7	
Kp Ganancia proporcional del AVR [pu]	150,	
Ki Ganancia integral del AVR [pu]	30,	
VR Maxima tension de excitacion [pu]	37,2	
Kc Reactancia de conmutacion [pu]	0,3	
Te Cte. de tiempo dela excitatriz [seg]		
Vrmin Minima tension de excitacion [pu]		
Vrmax Maxima tension de excitacion [pu]		

Tabla 1. Parámetros del AVR.

Over-Flux Limiter VHZ:

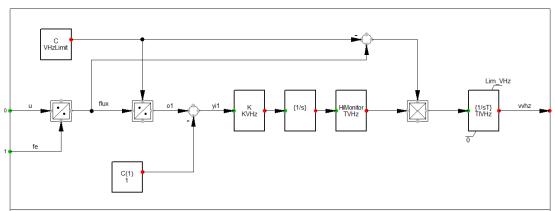


Figura 3: Diagrama de Bloques Modelo V/Hz

	Parameter
TIVHz Cte de tiempo de integración VHz [seg]	0,85
VHzLimit Setpoint VHz [pu]	1,05
KVHz Porcentaje de exceso para calcular delay [%]	10,
TVHz Umbral de tiempo para escalon temporizado VHz [0,97
Lim_VHz Limite Superior VHz [pu]	0,5

Tabla 2. Parámetros del Modelo V/Hz

Over-Excitation Limiter OEL:

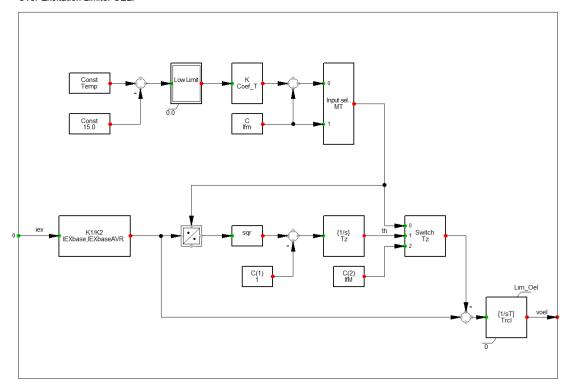


Figura 4: Diagrama de bloques de Modelo OEL

	Parameter
West in the OFI town arise to find	0.00
Ifm Limite OEL temporizado [pu]	0,92
IfM Limite OEL instantaneo [pu]	1,76
IEXbase Corriente base [A]	0,9477
IEXbaseAVR Corriente base del AVR [A]	6,5
Tz Umbral de tiempo para escalon temporizado	28,
Trcl Cte de tiempo de integración OEL [seg]	2,5
Temp Temperatura ambiente [Deg C]	35,
Coef_T Coeficiente por correccion de temp. [pu/C]	0,
MT Dependencia de la temp. (1:Si/0:No) [s/u]	0,
Lim_Oel Limite Superior OEL [pu]	0,5

Tabla 3. Parámetros del Modelo OEL.

Under-Excitation Limiter UEL:

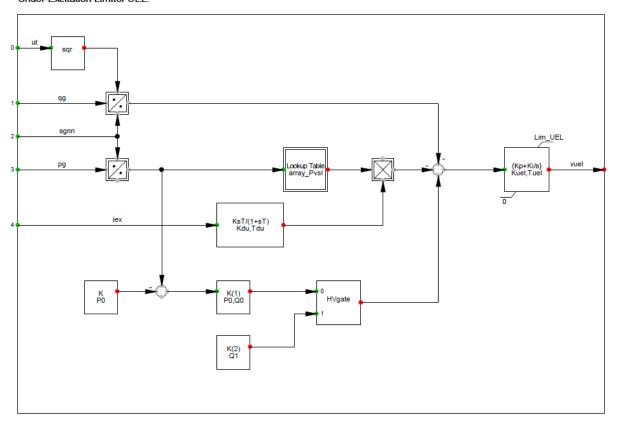


Figura 5: Diagrama de bloques de Modelo UEL

	Parameter
Kuel Ganancia proporcional UEL [pu]	2,
Tuel Ganancia integral UEL [pu]	2,
Kdu Ganancia de estabilizacion UEL [pu]	0,1
Tdu Cte. de tiempo de estabilizacion UEL [pu]	1,25
P0 Limite de P cuando Q=0 UEL [pu]	3,2
Q0 Limite de Q cuando P=0 UEL [pu]	-0,365
Q1 Limite de Q UEL [pu]	-0,3
Lim_UEL Limite Superior UEL [pu]	1,

	Pvsl_x	Pvsl_y
Size	4,	4,
1	0,	0,
2	0,2	0,
3	0,3	1,
4	1,	1,

Tabla 4. Parámetros del Modelo UEL

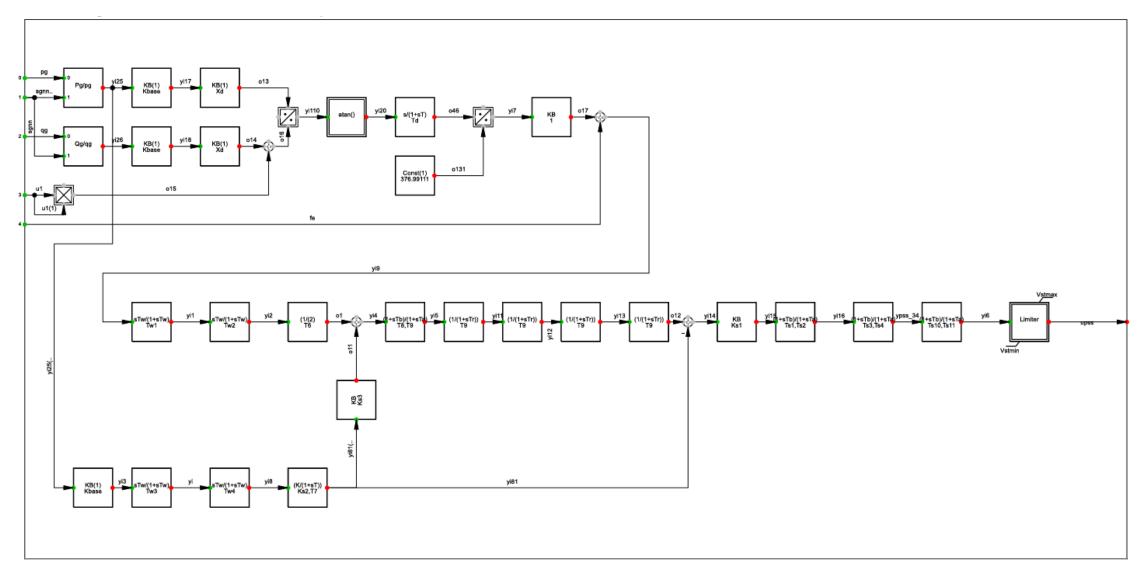


Figura 6: Diagrama de bloques de Modelo del PSS

	Parameter
Tw1 1th Washout 1th Time Constant [s]	2,
Tw4 2th Washout 2th Time Constant [s]	2,
T6 1th Signal Trannducer Time Constant [s]	0,
Tw2 1th Washout 2th Time Constant [s]	2,
Tw3 2th Washout 1th Time Constant [s]	2,
Ks2 2th Signal Transducer Factor [p.u.]	0,2
T7 2th Signal Transducer Time Constant [s]	2,
Ks3 Washouts Coupling Factor [p.u.]	1,
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,5
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
Ks1 PSS Gain [p.u.]	7,
Kbase Cambio de bases [MVA/MVA]	1,
Ts1 1th Lead-Lag Derivative Time Constant [s]	0,2
Ts2 1th Lead-Lag Delay Time Constant [s]	0,03
Ts3 2th Lead-Lag Derivative Time Constant [s]	0,2
Ts4 2th Lead-Lag Delay Time Constant [s]	0,03
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,22
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,15
Xd Direct axis sincronous reactance [pu]	0,2
Td Frecuency estimation time constant [s]	0,02
Vstmin Controller Minimum Output [p.u.]	-0,05
Vstmax Controller Maximum Output [p.u.]	0,05

Tabla 5. Parámetros del Modelo del PSS

Figura 7: Diagrama de bloques de Regulador de Velocidad

FCtrl: Control de Frecuencia

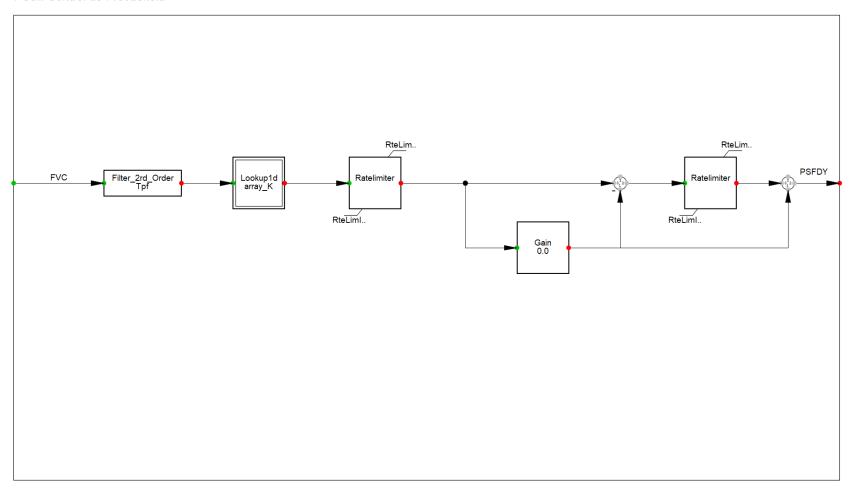


Figura 8: Diagrama de bloques de Control de Frecuencia (FCTRL)

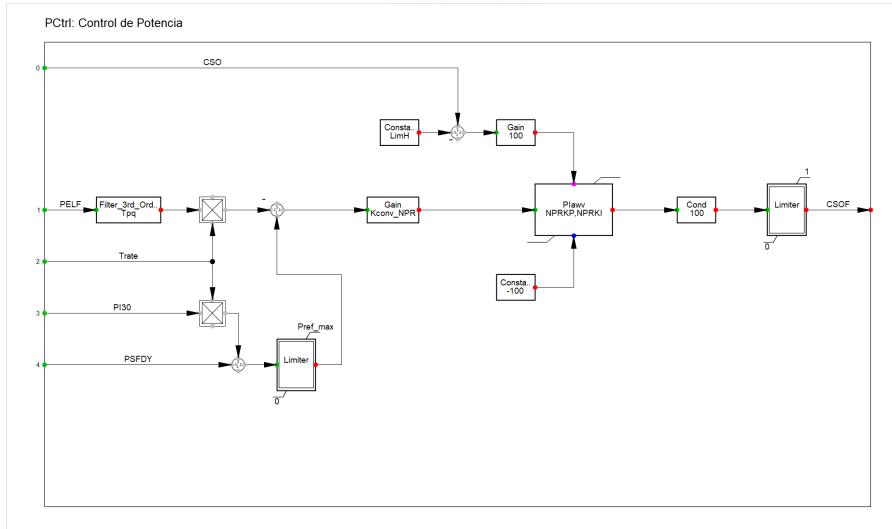


Figura 9: Diagrama de bloques de Control de Potencia (PCTRL)

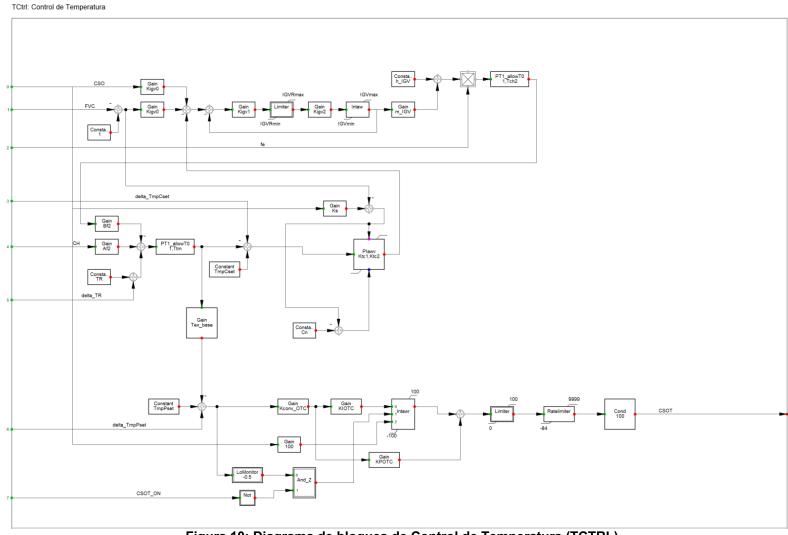


Figura 10: Diagrama de bloques de Control de Temperatura (TCTRL)

	Parameter
Kch Ganancia de Cámara [pu]	1,
Tch Cte de Tiempo de Cámara [s]	1,
Kval1 Ganancia Proporcional 1 Válvula [pu]	3,75
Kval2 Ganancia Proporcional 2 Válvula [pu]	1,2
Tpq Cte de Tiempo de Medición Potencia Activa [s]	0,1
Kconv_NPR Ganancia de Conservacón NPR [pu]	0,666
LimH Límite Superior del PI [pu]	0,04
NPRKP Ganancia Proporcional del PI [pu]	0,54
NPRKI Ganancia Integral del PI [1/s]	0,05
Tpf Cte de Tiempo Medición de Frecuencia [s]	0,
Trate Potencia Base GOV [MW]	115,
Kigv0 Influencia Frec y CSO en IGV [pu]	1,8
Kigv1 Cte Posición Valv 1 [pu]	1,5
Af2 Influencia Pot en Texh [pu]	0,8575
Ttm Cte de Medición de ATK [s]	30,
Tch2 Cte de Tiempo Aire de IGV [s]	0,25
Ks Ganancia Limite IGV [pu]	1,8
Kconv_OTC Ganancia de Conservacón OTC [pu]	0,0667
KPOTC Ganancia Proporcional Ctrl Temp [pu]	0,3
Tex_base Temperatura de los gases de salida base	1030,
m_IGV Coeficiente Funcion IGV Pos 1 [pu]	0,4
KIOTC Ganancia Integral Ctrl Temp [1/s]	0,02083
Kigv2 Cte Posición Valv 2 [pu]	0,15
Bf2 Influencia IGV en Texh [pu]	0,406
TR Influencia Temp Amb en Texh [pu]	0,65
TmpCset Temperatura de Control IGV [pu]	0,9436893
Cn Offset Min Lim Temp IGV [pu]	1,
TmpPset Temperatura de Control [pu]	1030,
h_IGV Coeficiente Funcion IGV Pos 2 [pu]	0,505
Ktc1 Ganancia Proporcional Ctrl Temp IGV [pu]	3,
Ktc2 Ganancia Integral Ctrl Temp IGV [1/s]	0,5
VALRmin Mínimo Gradiente Válvula [pu]	-1,
VALmin Potencia Mínima Turbina [pu]	0,
RteLimInf2 Rate Limiter Inf 2 [pu/s]	-9999,
RteLimInf1 Rate Limiter Inf 1 [pu/s]	-25,
IGVRmin Limite Inferior Rate Lim IGV [pu/s]	-1,
IGVmin Limite Inferior Pos IGV [pu]	0,
VALRmax Máximo Gradiente Válvula [pu]	1,
VALmax Potencia Máxima Turbina [pu]	1,
Pmax Potencia Máxima de Turbina [pu]	1,
Pref_max Máxima referencia de Potencia Activa [M	135,9
RteLimSup2 Rate Limiter Sup 2 [pu/s]	9999,
RteLimSup1 Rate Limiter Sup 1 [pu/s]	25,
IGVRmax Limite Superior Rate Lim IGV [pu/s]	1,
IGVmax Limite Superior Pos IGV [pu]	1,

Tabla 6. Parámetros del Regulador de Velocidad

	K_x	K_y
Size	6,	6,
1	0,8	130,
2	0,95	130,
3	0,999445	0,
4	1,000556	0,
5	1,05	-130,
6	1,2	-130,

Tabla 7. Característica de regulación primaria de frecuencia

Turbina: Maquina Motriz

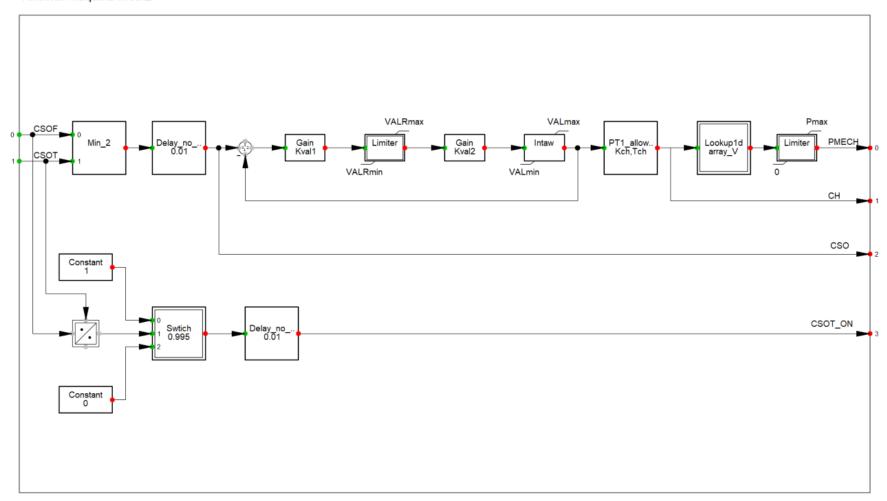


Figura 11: Diagrama de bloques Modelo Turbina

	V_x	V_y
Size	19,	19,
1	0,2	0,
2	0,6	0,516
3	0,62854	0,567
4	0,64242	0,597
5	0,65605	0,625
6	0,67511	0,666
7	0,69556	0,689
8	0,70617	0,707
9	0,72659	0,752
10	0,76402	0,815
-11	0,77452	0,834
12	0,78229	0,848
13	0,80644	0,884
14	0,83198	0,909
15	0,87092	0,939
16	0,90843	0,963
17	0,94943	0,981
18	0,99014	0,992
19	1,	1,

Tabla 8: Característica de la Válvula de Control