

Resultados Validación CT1

TAG	Descripción	Valor	Unidad
Sn	Potencia Aparente Nominal	150	MVA
Vn	Tensión Nominal	13.8	kV
Xd	Reactancia Sincrónica eje directo	2.453	pu
Xq	Reactancia Sincrónica eje cuadratura	2.244	pu
X'd	Reactancia Transitoria eje directo	0.19	pu
X'q	Reactancia Transitoria eje cuadratura	0.23	pu
X"d	Reactancia Subtransitoria eje directo	0.14	pu
X"q	Reactancia Subtransitoria eje cuadratura	0.17	pu
T'do	Constante de Tiempo Transitoria de Circuito Abierto eje directo (@75°C)	8.426	S
T'qo	Constante de Tiempo Transitoria de Circuito Abierto eje cuadratura (@75°C)	0.887	S
T"do	Constante de Tiempo Subtransitoria de Circuito Abierto eje directo (@75°C)	0.044	S
T"qo	Constante de Tiempo Subtransitoria de Circuito Abierto eje cuadratura (@75°C)	0.071	S
XI	Reactancia de Dispersión	0.12	pu
X0	Reactancia Homopolar	0.0485	pu
X2	Resistencia de Secuencia Negativa	0.097	pu
Ra	Resistencia de armadura	0	pu
S 1.0	Parámetro de Saturación a ETERM = 1.0 pu	0.095	pu
S 1.2	Parámetro de Saturación a ETERM = 1.2 pu	0.6	pu
Н	Constante de Inercia	6.1	S
TG	Tipo de Generador (Liso/saliente)	Liso	-

Tabla 1. Parámetros Modelo Generador CT1 - Flores 1

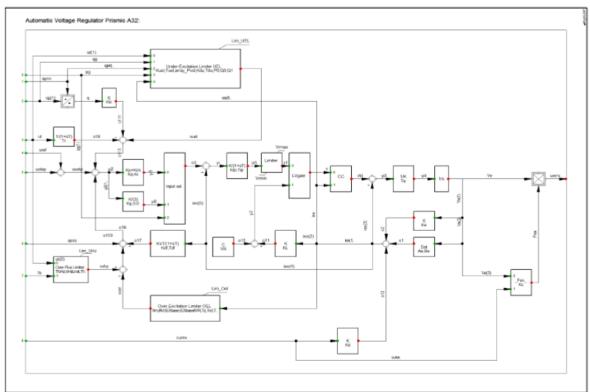


Figura 1: Diagrama de Bloques del AVR.

	Parameter
►fm Limite OEL temporizado [pu]	0,92
FM Limite OEL instantaneo [pu]	0,94
IEXbase Corriente base [A]	1,16
IEXbaseAVR Corriente base del AVR [A]	6.3
Tz Umbral de tiempo para escalon temporizado OEL [15.
Trol Qe de tiempo de integración OEL [seg]	2.
Temp Temperatura ambiente [Deg C]	35,
Coef_T Coeficiente por correccion de temp. [pu/C]	D,
MT Dependencia de la temp. (1:Si/0:No) [s/u]	D,
Kdf Ganancia proporcional de realimentacion [pu]	0,01
Tdf Cte de tiempo de realimentacion [seg]	0,9
Kip Ganancia del puente [pu]	18,
Tip Ce de tiempo del puente (seg)	0,005
Tr Cte. de tiempo del transductor (seg)	0,001
Ke Ganancia de la excitatriz [pu]	1,
KL Reactancia del puente [pu]	0,7
Kd Reaccion de armadura [pu]	0.45
Klc Ganancia compensacion de reactivo [pu]	-0.05
Ae Parametro de saturación excitatriz [pu]	0.015
Be Parametro de saturación excitatriz [pu]	0,7
Kp Ganancia proporcional del AVR [pu]	90,
Ki Gananda integral del AVR [pu]	35,
VR Maxima tension de excitacion [pu]	32,
Kc Reactancia de conmutacion [pu]	0,2
Kuel Ganancia proporcional UEL [pu]	0,35
Tuel Ganancia integral UEL (pu)	1,
Kdu Ganancia de estabilizacion UEL (pu)	0,1
Tdu Cte, de tiempo de estabilización UEL [pu]	1,
P0 Limite de P cuando Q=0 UEL [pu]	1,2321
QD Limite de Q cuando P=0 UEL [pu]	-0,426
Q1 Limite de Q UEL [pu]	-0.3834
TIVHz Cte de tiempo de integración VHz [seg]	1.
VHzLimit Setpoint VHz [pu]	1,05
TVHz Umbral de tiempo para escalon temporizado VH	10,
KVHz Porcentaje de exceso para calcular delay [%]	0,
Te Cte. de tiempo dela excitatriz [seg]	2,65
Vmin Minima tension de excitacion [pu]	-26,5
Lim_Oel Limite Superior OEL [pu]	0,5
Vmax Maxima tension de excitacion (pu)	32,
Lim_UEL Limite Superior UEL [pu]	1,
Lim_VHz Limite Superior VHz [pu]	0,5

Tabla 2. Parámetros del AVR.

Over-Flux Limiter VHZ:

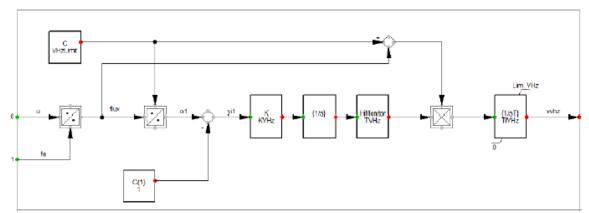


Figura 2: Diagrama de Bloques Modelo V/Hz

TIVHz Cte de tiempo de integración VHz [seg]	1,
VHzLimit Setpoint VHz [pu]	1,05
TVHz Umbral de tiempo para escalon temporizado VH	10,
KVHz Porcentaje de exceso para calcular delay [%]	0,
Lim_VHz Limite Superior VHz [pu]	0,5

Tabla 3. Parámetros del Modelo V/Hz

Over-Excitation Limiter OEL:

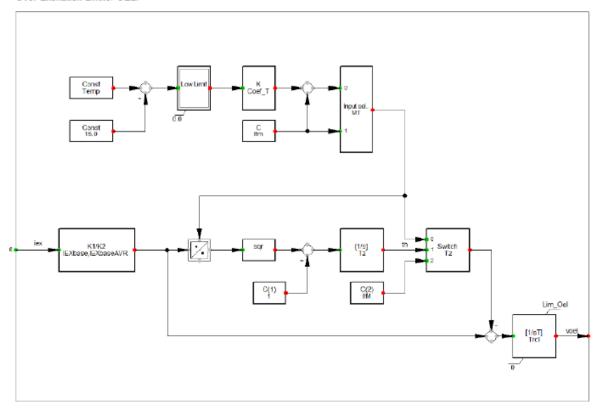


Figura 3: Diagrama de bloques de Modelo OEL

	Parameter
►lfm Limite OEL temporizado [pu]	0,92
IfM Limite OEL instantaneo [pu]	0,94
IEXbase Corriente base [A]	1,16
IEXbaseAVR Comiente base del AVR [A]	6,3
Tz Umbral de tiempo para escalon temporizado OEL [15,
Trcl Cte de tiempo de integración OEL [seg]	2,
Temp Temperatura ambiente [Deg C]	35,
Coef_T Coeficiente por correccion de temp. [pu/C]	0,
MT Dependencia de la temp. (1:Si/0:No) [s/u]	0,
Lim_Oel Limite Superior OEL [pu]	0,5

Tabla 4. Parámetros del Modelo OEL.

Under-Excitation Limiter UEL:

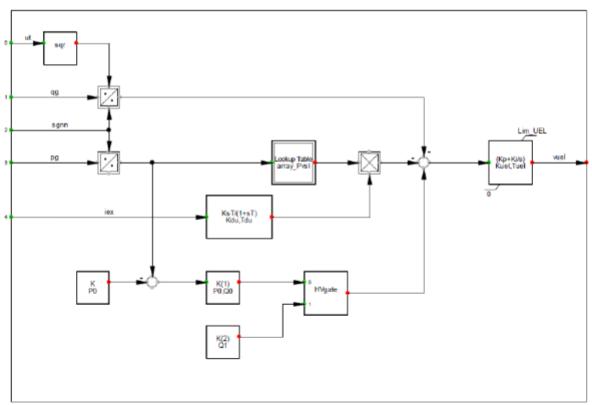


Figura 4: Diagrama de bloques de Modelo UEL

Kuel Ganancia proporcional UEL [pu]	0,35
Tuel Ganancia integral UEL [pu]	1,
Kdu Ganancia de estabilizacion UEL [pu]	0,1
Tdu Cte. de tiempo de estabilizacion UEL [pu]	1,
P0 Limite de P cuando Q=0 UEL [pu]	1,2321
Q0 Limite de Q cuando P=0 UEL [pu]	-0,426
Q1 Limite de Q UEL [pu]	-0,3834
Lim_UEL Limite Superior UEL [pu]	1,

	Pvsl_x	Pvsl_y
Size	4,	4.
1	0,	0,
2	0,2	0,
3	0,3	1,
4	1,	1,

Tabla 5. Parámetros del Modelo UEL

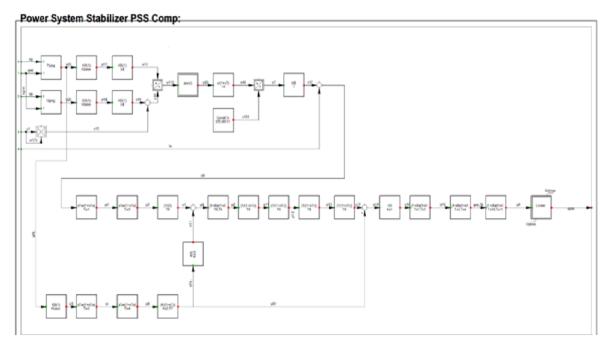


Figura 5: Diagrama de bloques de Modelo del PSS

	Parameter
Tw1 1th Washout 1th Time Constant [s]	2,
Tw4 2th Washout 2th Time Constant [s]	2,
T6 1th Signal Trannducer Time Constant [s]	0,
Tw2 1th Washout 2th Time Constant [s]	2,
Tw3 2th Washout 1th Time Constant [s]	2,
Ks2 2th Signal Transducer Factor [p.u.]	0,164
T7 2th Signal Transducer Time Constant [s]	2,
Ks3 Washouts Coupling Factor [p.u.]	1,
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,5
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
Ks1 PSS Gain [p.u.]	10,
Kbase Cambio de bases [MVA/MVA]	1,
Ts1 1th Lead-Lag Derivative Time Constant [s]	0,2
Ts2 1th Lead-Lag Delay Time Constant [s]	0,02
Ts3 2th Lead-Lag Derivative Time Constant [s]	0,2
Ts4 2th Lead-Lag Delay Time Constant [s]	0,02
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,15
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,2
Xd Direct axis sincronous reactance [pu]	0,2
Td Frecuency estimation time constant [s]	0,02
Vstmin Controller Minimum Output [p.u.]	-0,05
Vstmax Controller Maximum Output [p.u.]	0,05

Tabla 6. Parámetros del Modelo del PSS

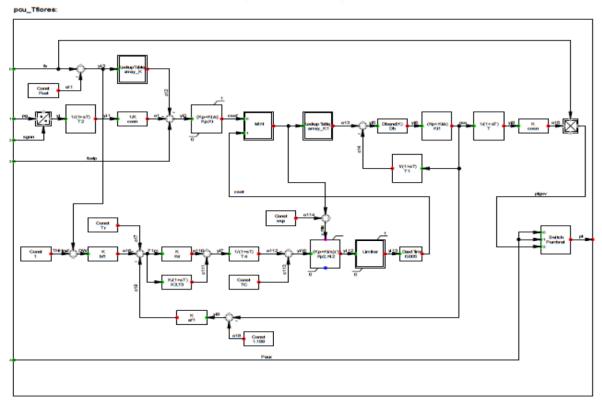


Figura 6: Diagrama de bloques de Regulador de Velocidad

TZ - Cte. de medicion P activa [seg]	0,2
T1 Cte. de tiempo Backlash [seg]	0,4
K3 Generoie proporcional PT1 FSRT (pu)	0.2
T3 Cta. de tiempa PT1 FSRT [seg]	15,
T4 Cte. de tiempo termocupia FSRT [seg]	7,25
Pumbral Umbral de Potencia (pu)	0.822
T	0,6
cosn Factor de potencia nominal (pu/pu)	0,95
Kp - Glanancia proporcional PI [pu]	0.495
Ki Ganancia integral PI [pu]	0,0126
Tr Rate de Temperatura (°C)	1199,
TC - Setpoint de Temperatura (°C)	1008.9
wup (pu)	0,01
Fset [pu]	0,
Db Banda Muerta Backlesh (pu)	0,009
Ki1 - Glanancia integral Pl Backlash [pu]	1,152
al1 Ganancia influencia del flujo de combustible [pu]	575,616
bl1 Gianancia influencia de la velocidad (pu)	200.
K4 Ganancia proporcional PT1 F5RT (pu)	8,0
Kp2 Ganancia proporcional Pl Temperatura [pu]	0,02
Ki2 - Gianancia integral Pl Temperatura [pu]	0.00285714

Tabla 7. Parámetros del Regulador de Velocidad

K_x	ر _ي K	K1_x	ى_K1_
6,	6,	10,	10,
0,9576	-1,1	0,	0,
0,96088	-1,01252	0,31	0,218
0,9995	0,	0,33027	0,258
1,0005	0,	0,356	0,2914
1,03966	1,01252	0,41	0,382
1,0431	1,1	0,449	0,509
0,	0,	0,47	0,5586
0,	0,	0,577	0,746
0,	0,	0,588	0,758563
0,	0,	0,85	1,0578

Tabla 8. Parámetros - Tablas del GOV

Resultados Validación ST1

TAG	Descripción	Valor	Unidad
Sn	Potencia Aparente Nominal	57.778	MVA
Vn	Tensión Nominal	13.8	kV
Xd	Reactancia Sincrónica eje directo	1.8667	pu
Xq	Reactancia Sincrónica eje cuadratura	1.8568	pu
X'd	Reactancia Transitoria eje directo	0.135	pu
X'q	Reactancia Transitoria eje cuadratura	0.25	pu
X"d	Reactancia Subtransitoria eje directo	0.097	pu
X"q	Reactancia Subtransitoria eje cuadratura	0.097	pu
T'do	Constante de Tiempo Transitoria de Circuito Abierto eje directo (@75°C)	4.568	S
T'qo	Constante de Tiempo Transitoria de Circuito Abierto eje cuadratura (@75°C)	1.9	s
T"do	Constante de Tiempo Subtransitoria de Circuito Abierto eje directo (@75°C)	0.08603	S
T"qo	Constante de Tiempo Subtransitoria de Circuito Abierto eje cuadratura (@75°C)	0.0558	s
XI	Reactancia de Dispersión	0.072	pu
X0	Reactancia Homopolar	0.0485	pu
X2	Resistencia de Secuencia Negativa	0.097	pu
Ra	Resistencia de armadura	0	pu
S 1.0	Parámetro de Saturación a ETERM = 1.0 pu	0.14	pu
S 1.2	Parámetro de Saturación a ETERM = 1.2 pu	0.48	pu
Н	Constante de Inercia	4.6	S
TG	Tipo de Generador (Liso/saliente)	Liso	-

Tabla 1. Parámetros Modelo Generador ST1 – Flores 1

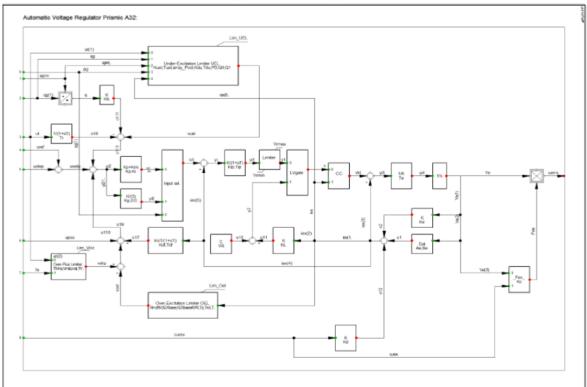


Figura 1: Diagrama de Bloques del AVR.

Consejo Nacional de Operación

	Parameter
Ifm Limite OEL temporizado [pu]	1,45
IfM Limite OEL instantaneo [pu]	1,76
IEXbase Corriente base [A]	0,94
IEXbaseAVR Contente base del AVR [A]	5,
Tz Umbral de tiempo para escalon temporizado OEL [14.
Trcl Cte de tiempo de integración OEL [seg]	1,5
Temp Temperatura ambiente [Deg C]	35,
Coef_T Coeficiente por correccion de temp. [pu/C]	-0,0085
MT Dependencia de la temp. (1:Si/0:No) [s/u]	1,
Kdf Ganancia proporcional de realimentacion [pu]	0,01323
Tdf Cte de tiempo de realimentacion (seg)	1,
Kip Ganancia del puente [pu]	37.
Tip Cte de tiempo del puente [seg]	0,005
Tr Cte. de tiempo del transductor [seg]	0,01
Ke Ganancia de la excitatriz [pu]	1,
KL Reactancia del puente [pu]	0.1
Kd Reaccion de amadura (pu)	0,7
Klc Ganancia compensacion de reactivo [pu]	-0,02
Ae Parametro de saturación excitatriz [pu]	0,01178
Be Parametro de saturación excitatriz [pu]	0,9118
Kp Ganancia proporcional del AVR [pu]	60,
Ki Ganancia integral del AVR (pu)	37.
VR Maxima tension de excitacion [pu]	36,11
Kc Reactancia de conmutacion [pu]	0,16
Kuel Ganancia proporcional UEL [pu]	0,05
Tuel Ganancia integral UEL [pu]	1,
Kdu Ganancia de estabilizacion UEL [pu]	0,1
Tdu Cte. de tiempo de estabilizacion UEL [pu]	1,
P0 Limite de P cuando Q=0 UEL [pu]	1,6452
Q0 Limite de Q cuando P=0 UEL [pu]	-0,5689
Q1 Limite de Q UEL [pu]	-0,512
TIVHz Cte de tiempo de integración VHz [seg]	1,
VHzLimit Setpoint VHz [pu]	1,08
TVHz Umbral de tiempo para escalon temporizado VH	10,
KVHz Porcentaje de exceso para calcular delay [%]	1.
Te Cte. de tiempo dela excitatriz [seg]	3,45
Vmin Minima tension de excitacion (pu)	-33,33
Lim_Oel Limite Superior OEL [pu]	0,5
Vmax Maxima tension de excitación [pu]	36,11
Lim_UEL Limite Superior UEL [pu]	1,
Lim_VHz Limite Superior VHz [pu]	0,5

Tabla 2. Parámetros del AVR.

Over-Flux Limiter VHZ:

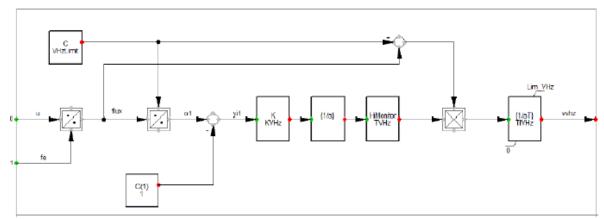


Figura 2: Diagrama de Bloques Modelo V/Hz

TIVHz Cte de tiempo de integración VHz [seg]	1,
VHzLimit Setpoint VHz [pu]	1,08
TVHz Umbral de tiempo para escalon temporizado VH	1,
KVHz Porcentaje de exceso para calcular delay [%]	10,
Lim_VHz Limite Superior VHz [pu]	0,5

Tabla 3. Parámetros del Modelo V/Hz

Over-Excitation Limiter OEL:

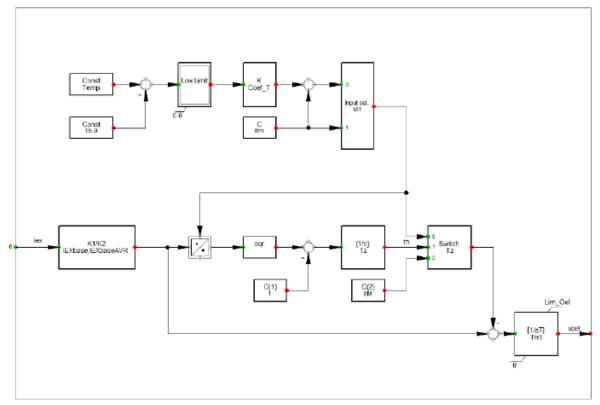


Figura 3: Diagrama de bloques de Modelo OEL

	Parameter
Ifm Limite OEL temporizado [pu]	1,45
IfM Limite OEL instantaneo [pu]	1,76
IEXbase Corriente base [A]	0,94
IEXbaseAVR Comiente base del AVR [A]	5,
Tz Umbral de tiempo para escalon temporizado OEL [14,
Trcl Cte de tiempo de integración OEL [seg]	1,5
Temp Temperatura ambiente [Deg C]	35,
Coef_T Coeficiente por correccion de temp. [pu/C]	-0,0085
MT Dependencia de la temp. (1:Si/0:No) [s/u]	1,
Lim_Oel Limite Superior OEL [pu]	0,5

Tabla 4. Parámetros del Modelo OEL.

Under-Excitation Limiter UEL:

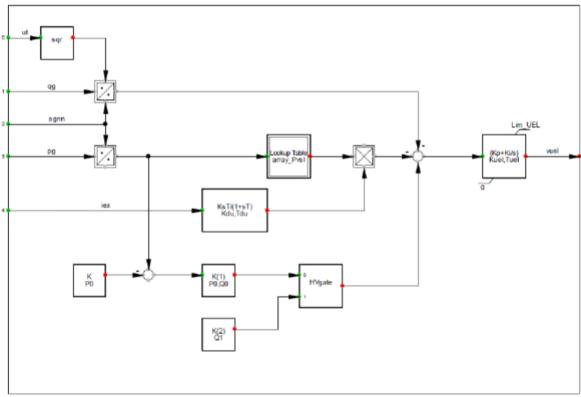


Figura 4: Diagrama de bloques de Modelo UEL

Kuel Ganancia proporcional UEL [pu]	0,05
Tuel Ganancia integral UEL [pu]	1,
Kdu Ganancia de estabilizacion UEL [pu]	0,1
Tdu Cte. de tiempo de estabilizacion UEL [pu]	1,
P0 Limite de P cuando Q=0 UEL [pu]	1,6452
Q0 Limite de Q cuando P=0 UEL [pu]	-0,5689
Q1 Limite de Q UEL [pu]	-0,512
Lim_UEL Limite Superior UEL [pu]	1,

	Pvsl_x	Pvsl_y
Size	4,	4.
1	0,	0,
2	0,2	0,
3	0,3	1,
4	1,	1,

Tabla 5. Parámetros del Modelo UEL

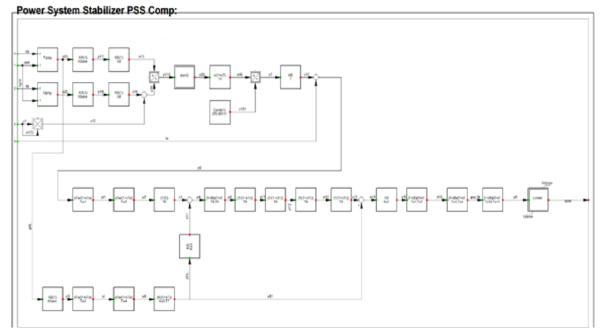


Figura 5: Diagrama de bloques de Modelo del PSS

	Parameter
Tw1 1th Washout 1th Time Constant [s]	2,
Tw4 2th Washout 2th Time Constant [s]	2,
T6 1th Signal Trannducer Time Constant [s]	0,
Tw2 1th Washout 2th Time Constant [s]	2,
Tw3 2th Washout 1th Time Constant [s]	2,
Ks2 2th Signal Transducer Factor [p.u.]	0,238
T7 2th Signal Transducer Time Constant [s]	2,
Ks3 Washouts Coupling Factor [p.u.]	1,
T8 Ramp Tracking Filter Deriv. Time Constant [s]	0,5
T9 Ramp Tracking Filter Delay Time Constant [s]	0,1
Ks1 PSS Gain [p.u.]	10,
Kbase Cambio de bases [MVA/MVA]	1,
Ts1 1th Lead-Lag Derivative Time Constant [s]	0,2
Ts2 1th Lead-Lag Delay Time Constant [s]	0,02
Ts3 2th Lead-Lag Derivative Time Constant [s]	0,2
Ts4 2th Lead-Lag Delay Time Constant [s]	0,02
Ts10 3rd Lead-Lag Derivative Time Constant [s]	0,08
Ts11 3rd Lead-Lag Delay Time Constant [s]	0,02
Xd Direct axis sincronous reactance [pu]	0,2
Td Frecuency estimation time constant [s]	0,02
Vstmin Controller Minimum Output [p.u.]	-0,05
Vstmax Controller Maximum Output [p.u.]	0,05

Tabla 6. Parámetros del Modelo del PSS