ANEXO 4

Para las corridas iniciales se utilizará la metodología descrita en el presente anexo, sin embargo, el SHyPH podrá realizar los ajustes que considere necesario.

La información de caudales utilizada para el cálculo de los períodos con similitud hidrológica antecedente (conocido también como el método de los análogos) se compone de los caudales medios mensuales para aquellas series declaradas por los agentes y oficializadas mediante acuerdos CNO que además al ser actualizadas regularmente por los agentes, bien sea cada día mediante el envío de la información operativa vía Neptuno-web (25 series) o a comienzos de cada mes (CHEC, 5 series) permitan disponer datos a fin del mes inmediatamente anterior al del cálculo de los períodos análogos hidrológicos.

No.	Nombre Serie	Registros*
1	Bogotá N.R.	1934 - 2014
2	Chuza	1967 - 2014
3	Guavio	1963 - 2014
4	Nare	1956 - 2014
5	Guadalupe	1938 - 2014
6	Concepción	1955 - 2014
7	Tenche	1955 - 2014
8	Guatapé	1959 - 2014
9	Grande	1942 - 2014
10	Porce2	1973 - 2014
11	Porce3	1973 - 2014
12	Salvajina	1947 - 2014
13	Calima	1946 - 2014
14	Alto Anchicayá	1976 - 2014
15	Digua	1976 - 2014
16	Prado	1955 - 2014
17	San Lorenzo	1956 - 2014
18	San Carlos	1965 - 2014
19	Miel	1963 - 2014
20	Guarinó	1980 - 2014
21	Manso	1966 - 2014
22	Amoyá	1974 - 2014
23	Batá+desv	1978 - 2014
24	Betania	1961 - 2014
25	Urrá	1960 - 2014
26	Chinchiná	1961 - 2014
27	San Francisco	1980 - 2014
28	Campoalegre	1980 - 2014
29	San Eugenio	1980 - 2014
30	Estrella	1973 - 2014

(*) Años completos

Tabla 1. Registros históricos de caudal mensual disponibles

En la tabla 1 se presentan todas las series utilizadas para la determinación de los períodos antecedentes análogos, junto con sus registros de información histórica. La anotación de "Años completos" se refiere a datos desde enero del primer año.

Como puede verse, el período común de registros históricos es 1980. Por lo tanto se trabajará con la información hidrológica desde enero de 1980 hasta el último mes del año de cálculo de los análogos (en este caso, 2014).

Lo primero que se hace con la serie de caudales medios mensuales de cada serie hidrológica, es transformarla en energía mediante la fórmula:

$$E_{i,j}^{k} = 0.024 * Q_{i,j}^{k} * FC^{k} * n_{j}$$
 (1)

Dónde:

i: representa el año (i = 1, 2, 3,, N)

j: corresponde al mes (j = ene, feb,, dic)

K: serie hidrológica (**K** = Alto Anchicayá, Batá, Betania,.....)

E: energía en GWhmes

Q: caudal mensual en m^3/s

FC: factor de conversión mediano de la serie, en $MW/(m^3/s)$

número de días en el mes (28, 30 o 31); para efectos de simplificación, se asume que febrero tiene 28 días.

Así, si por ejemplo se debe calcular la energía de enero de 1980 para la serie Alto Anchicaya, cuyo caudal medio en dicho mes fue de 35.1 m^3/s , y tiene un factor de conversión de 4.4178 $MW/(m^3/s)$, la ecuación (1) quedará como sigue:

$$E_{1980,ene}^{Alto\ Anchicay\'a} = 0.024*35.1*4.4178*31 = 115.4\ GWhmes$$

Este cálculo se repite para todos los meses de cada una de las series hidrológicas. Luego se agregan los aportes por cada mes de registros históricos conjuntos, obteniéndose entonces la matriz de aportes energéticos agregados para todas las treinta (30) series analizadas.

Los aportes energéticos de la serie agregada, para el período 1980 a 2014 se muestran en la tabla 2.

Año	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
1980	2517.9	2092.2	2010.7	2979.3	3857.5	5920.8	4618.2	3819.1	3733.0	5501.2	4238.7	316
1981	1958.4	2016.9	2409.1	4221.6	7767.0	6641.7	5791.2	4097.6	4689.1	5520.4	5088.6	346
1982	3151.6	2840.8	3360.4	6650.1	7504.9	4660.6	5539.2	4641.4	4421.1	5168.5	3821.2	30
1983	2110.7	1808.2	2808.9	5111.1	5307.2	4310.5	5434.8	4867.9	4493.8	4476.2	3436.2	38
1984	3111.1	3284.9	2327.8	2973.2	5219.9	7286.2	5906.8	5806.8	5968.4	6151.4	6133.9	37
1985	2527.8	1701.5	2263.9	2939.5	5215.2	5486.8	4408.8	5893.0	5540.1	5236.7	4700.2	36
1986	2550.9	2716.6	3260.8	4452.9	4634.5	7065.0	6952.7	4842.0	3407.0	7047.9	4882.2	28
1987	1924.2	1778.8	1904.5	2883.5	4828.5	3661.3	6108.5	5655.5	4221.0	5927.6	4206.7	32
1988	2015.9	1840.5	1703.5	3108.4	3883.9	4996.4	6408.3	5607.3	6032.1	6103.3	7395.3	53
1989	3931.6	2828.7	4155.1	3639.3	5908.8	6075.3	5551.8	4519.3	5119.4	5572.6	4674.6	33
1990	2563.2	2343.8	2891.3	3854.1	6567.0	5557.9	5092.9	4215.6	3629.3	5657.1	4549.4	37
1991	2175.4	1656.7	2557.6	3173.8	4599.5	4766.1	6760.1	5469.4	3590.5	3830.0	4188.7	30
1992	1885.4	1584.0	1711.6	2315.5	3293.1	3335.1	5048.6	4756.0	3932.9	3281.0	3377.5	33
1993	2491.8	1818.1	2625.1	3883.7	5420.6	4829.6	5682.8	4455.3	5097.8	4628.3	5150.0	4
1994	2624.7	2236.8	3055.1	4553.9	6279.7	5766.8	6380.0	5611.3	4453.5	5426.4	5202.6	32
1995	1962.7	1408.0	2382.6	3540.0	4887.2	5558.5	5266.2	5464.0	4026.8	4739.3	3882.1	38
1996	2664.9	2923.9	4255.1	4089.9	6990.7	6155.3	8150.0	5532.7	4312.6	6044.8	4107.7	34
1997	3215.1	2848.2	2688.3	3731.1	4355.6	4699.0	6276.3	3683.1	2783.1	2582.9	2973.8	17
1998	1362.5	1426.5	1597.8	3103.7	5432.0	6153.7	7315.4	4777.6	4738.9	4769.1	4780.1	47
1999	3691.5	4296.0	4630.5	6091.6	5996.4	6386.4	4757.7	4456.8	5792.2	7210.4	5935.3	52
2000	3035.2	2956.5	3398.0	3523.2	6662.2	6702.9	6364.5	6294.4	6402.4	5458.1	4825.2	34
2001	2417.7	1791.1	2633.7	2858.0	4908.4	5377.2	5035.3	4545.2	4525.2	4049.9	4568.3	4
2002	2285.3	1645.9	2474.2	4780.5	5519.4	6887.3	5332.7	5190.1	3803.6	3720.9	3491.0	27
2003	1603.0	1564.5	2455.5	4215.8	5688.8	5492.2	5444.6	5001.1	4281.9	5281.2	4859.6	40
2004	2633.9	1838.7	2660.7	4114.9	6572.2	6974.4	5874.9	5270.2	4870.9	5257.2	6068.4	35
2005	2624.8	2453.9	2309.6	3870.8	6281.1	5500.8	4240.9	4275.3	4505.6	5839.8	6587.2	36
2006	2855.0	2227.0	3979.8	5990.2	7827.9	7077.4	5288.5	4175.4	3795.5	5278.7	6107.7	40
2007	2696.7	1648.9	2483.2	4819.8	6648.0	6859.7	4721.1	5449.7	5020.6	7020.0	5634.0	44
2008	3110.7	2964.7	3660.3	3843.5	6723.6	7539.0	8180.8	6636.1	5520.8	6411.0	7913.8	45
2009	3855.5	3189.8	4220.0	4677.2	4830.7	5402.0	5497.7	4692.4	3191.2	3784.3	4051.3	23
2010	1537.1	1426.5	1942.0	3680.7	5341.0	6133.2	7619.4	5460.3	6076.8	6121.6	8572.2	67
2011	3303.5	2933.1	5591.6	10015.7	9084.2	7080.3	5852.4	5069.7	4649.6	6744.4	7827.5	76
2012	4258.8	2678.7	3862.8	7646.2	7970.1	5016.8	5798.0	5518.3	3368.7	4647.5	3974.5	31
2013	1865.0	2392.9	3198.5	3166.1	6764.9	4674.2	4507.0	5425.2	4234.0	4234.2	5347.0	45
2014*	2634.2	2495.6	3284.2	3328.3	4487.9	6196.3						
ia	2604.4	2276.0	2935.8	4223.6	5807.4	5777.9	5800.2	5034.6	4536.2	5256.6	5075.1	38
vest	689.5	668.9	917.6	1529.6	1307.1	1041.8	1000.1	691.9	899.5	1098.5	1369.0	11

Tabla 2. Aportes agregados al SIN período ene/80 – jun/14

A continuación se estandariza la información contenida en la tabla 2. Para ello se calculan previamente la media y la desviación estándar para cada mes j, según método de los momentos:

Media para el mes j:

$$\bar{E}_{j} = \frac{1}{N} \sum_{i=1}^{N} E_{j,i} \tag{2}$$

Desviación estándar para el mes j:

$$\sigma_{j} = \sqrt[2]{\frac{\sum_{i=1}^{N} (E_{j,i} - \overline{E}_{j})^{2}}{N-1}}$$
 (3)

Los valores de la media y desviación estándar de los aportes agregados mensuales se pueden consultar respectivamente en las dos últimas filas de la tabla 2.

La estandarización de cualquier variable, mediante el uso de la ecuación (4), permite en un paso eliminar la estacionalidad y reducir el rango de variación de una variable permitiéndole mediante esta transformación comparar variables con magnitudes originales muy diferentes.

Una muestra estandarizada tiene dos propiedades muy importantes: su valor medio es "cero" y su desviación estándar es "uno", propiedades estas que facilitan la modelación estocástica de variables (estandarizadas).

$$\theta_{j,i} = \frac{E_{j,i} - \bar{E}_j}{\sigma_j} \tag{4}$$

Los valores estandarizados de energía agregada mensual se presentan en la tabla 3.

					Variable							
Año	ene	feb	mar	abr	may	jun	jul	ago	sep	oct	nov	dic
1980	-0.13	-0.27	-1.01	-0.81	-1.49	0.14	-1.18	-1.76	-0.89	0.22	-0.61	-
1981	-0.94	-0.39	-0.57	0.00	1.50	0.83	-0.01	-1.35	0.17	0.24	0.01	-
1982	0.79	0.84	0.46	1.59	1.30	-1.07	-0.26	-0.57	-0.13	-0.08	-0.92	-
1983	-0.72	-0.70	-0.14	0.58	-0.38	-1.41	-0.37	-0.24	-0.05	-0.71	-1.20	
1984	0.73	1.51	-0.66	-0.82	-0.45	1.45	0.11	1.12	1.59	0.81	0.77	
1985	-0.11	-0.86	-0.73	-0.84	-0.45	-0.28	-1.39	1.24	1.12	-0.02	-0.27	
1986	-0.08	0.66	0.35	0.15	-0.90	1.24	1.15	-0.28	-1.26	1.63	-0.14	
1987	-0.99	-0.74	-1.12	-0.88	-0.75	-2.03	0.31	0.90	-0.35	0.61	-0.63	
1988	-0.85	-0.65	-1.34	-0.73	-1.47	-0.75	0.61	0.83	1.66	0.77	1.69	
1989	1.92	0.83	1.33	-0.38	0.08	0.29	-0.25	-0.74	0.65	0.29	-0.29	
1990	-0.06	0.10	-0.05	-0.24	0.58	-0.21	-0.71	-1.18	-1.01	0.36	-0.38	
1991	-0.62	-0.93	-0.41	-0.69	-0.92	-0.97	0.96	0.63	-1.05	-1.30	-0.65	
1992	-1.04	-1.03	-1.33	-1.25	-1.92	-2.34	-0.75	-0.40	-0.67	-1.80	-1.24	
1993	-0.16	-0.68	-0.34	-0.22	-0.30	-0.91	-0.12	-0.84	0.62	-0.57	0.05	
1994	0.03	-0.06	0.13	0.22	0.36	-0.01	0.58	0.83	-0.09	0.15	0.09	
1995	-0.93	-1.30	-0.60	-0.45	-0.70	-0.21	-0.53	0.62	-0.57	-0.47	-0.87	
1996	0.09	0.97	1.44	-0.09	0.91	0.36	2.35	0.72	-0.25	0.72	-0.71	
1997	0.89	0.86	-0.27	-0.32	-1.11	-1.04	0.48	-1.95	-1.95	-2.43	-1.53	
1998	-1.80	-1.27	-1.46	-0.73	-0.29	0.36	1.51	-0.37	0.23	-0.44	-0.22	
1999	1.58	3.02	1.85	1.22	0.14	0.58	-1.04	-0.84	1.40	1.78	0.63	
2000	0.62	1.02	0.50	-0.46	0.65	0.89	0.56	1.82	2.07	0.18	-0.18	
2001	-0.27	-0.72	-0.33	-0.89	-0.69	-0.38	-0.76	-0.71	-0.01	-1.10	-0.37	
2002	-0.46	-0.94	-0.50	0.36	-0.22	1.06	-0.47	0.22	-0.81	-1.40	-1.16	
2003	-1.45	-1.06	-0.52	-0.01	-0.09	-0.27	-0.36	-0.05	-0.28	0.02	-0.16	
2004	0.04	-0.65	-0.30	-0.07	0.59	1.15	0.07	0.34	0.37	0.00	0.73	
2005	0.03	0.27	-0.68	-0.23	0.36	-0.27	-1.56	-1.10	-0.03	0.53	1.10	
2006	0.36	-0.07	1.14	1.15	1.55	1.25	-0.51	-1.24	-0.82	0.02	0.75	
2007	0.13	-0.94	-0.49	0.39	0.64	1.04	-1.08	0.60	0.54	1.61	0.41	
2008	0.73	1.03	0.79	-0.25	0.70	1.69	2.38	2.31	1.09	1.05	2.07	
2009	1.81	1.37	1.40	0.30	-0.75	-0.36	-0.30	-0.49	-1.50	-1.34	-0.75	
2010	-1.55	-1.27	-1.08	-0.35	-0.36	0.34	1.82	0.62	1.71	0.79	2.55	
2011	1.01	0.98	2.89	3.79	2.51	1.25	0.05	0.05	0.13	1.35	2.01	
2012	2.40	0.60	1.01	2.24	1.65	-0.73	0.00	0.70	-1.30	-0.55	-0.80	
2013	-1.07	0.17	0.29	-0.69	0.73	-1.06	-1.29	0.56	-0.34	-0.93	0.20	
2014*	0.04	0.33	0.38	-0.59	-1.01	0.40						
nformación Ope												
RIFICACIÓN												
dia	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
sv estándar	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	

Tabla 3. Aportes mensuales agregados estandarizados, período 1980-2014.

En la parte inferior de la tabla 3 se presenta la verificación de los cálculos.

Como era de esperarse, la media muestral es "cero" y la desviación estándar "uno".

En la misma tabla se resalta en rojo el último año de aportes energéticos (julio/2013 a junio/2014). Este período se utilizará para compararlo con los demás intervalos de tiempo en todos los años con información conjunta disponible. Es decir se comparará el período jul/2013 – jun/2014 con los períodos:

La comparación se hará mediante el siguiente indicador de analogía hidrológica (I):

Jul/2012 - Jun/2013

$$I = \sqrt{\sum_{m=1}^{12} (\theta_{\tau-m} - \theta_{\tau-m-12*(N-1)})^2}$$
 (5)

Dónde:

T: es el mes actual, en este caso julio/2014 (que no se incluye en los cálculos).

 $\tau - m$: son los doce meses antecendentes (m=1, 2, 3, ..., 12)

au-m-12*(N-1) mismo mes au-m en los demás años de registros históricos conjuntos.

Este indicador es en esencia muy similar a aquel conocido como el root-meansquare-deviation (RMSD), con la diferencia de que en este último las diferencias se promedian.

Como puede verse, en la ecuación 5, se compara el valor de cada uno de los últimos 12 meses ($\tau - m$, m=1, 2, 3, ..., 12) con cada mes de un período

similar en todos los años con registros de información conjunta. Esta comparación se hace mediante la resta, elevación posterior al cuadrado, sumar los doce valores obtenidos y finalmente extraer la raíz cuadrada de dicha suma.

Los cálculos se realizaron para el período en el cual existen registros históricos simultáneos, es decir, a partir de enero de 1980. Por lo tanto, si deseamos conocer qué período del pasado es el más parecido, en términos de este indicador, al período julio/2013-junio/2014, el cálculo se hará así:

Comparación entre los períodos: Jul/2013-Jun/2014 y Jul/1980-Jun/1981

$$I_{1} = \left(\theta_{\tilde{j}ul_2013} - \theta_{\tilde{j}ul_1980}\right)^{2} + \left(\theta_{ago_2013} - \theta_{ago_1980}\right)^{2} + \dots + \left(\theta_{\tilde{j}un_2014} - \theta_{\tilde{j}un_1981}\right)^{2}$$

Comparación entre los períodos: Jul/2013-Jun/2014 y Jul/1981-Jun/1982

$$I_{2} = \left(\theta_{jul\ 2013} - \theta_{jul\ 1981}\right)^{2} + \left(\theta_{ago\ 2013} - \theta_{ago\ 1981}\right)^{2} + \dots + \left(\theta_{jun\ 2014} - \theta_{jun\ 1982}\right)^{2}$$

Y así sucesivamente esto se repite para los demás "n" periodos de 12 meses.

La última comparación corresponde al periodo Jul/2013 – Jun/2014 con Jul/2012 – Jun/2013 y quedaría como sigue:

$$I_{N} = \left(\theta_{jul_2013} - \theta_{jul_2012}\right)^{2} + \left(\theta_{ago_2013} - \theta_{ago_2012}\right)^{2} + \dots + \left(\theta_{jun_2014} - \theta_{jun_2013}\right)^{2}$$

En la tabla 4 se muestran todos los cálculos arriba descritos. En la última columna (RAIZ), se extrae la raíz cuadrada de la suma de las desviaciones al cuadrado. El fin de extraer la raíz cuadrada es el de obtener el indicador en unidades similares a las originales.

		CÁI	LCULO DE	LA DESVIA	CIÓN CUAI	DRÁTICA -	OC- MİNIMA	, MESES JI	JLIO-JUNIO	PERÍODO	1980 - 2014	1		
AÑO	jul	ago	sep	oct	nov	dic	ene	feb	mar	abr	may	jun	SUMA	RAÍZ
1980	0.01	5.39	0.31	1.33	0.66	1.54	0.96	0.51	0.91	0.34	6.29	0.18	18.43	4.
1981	1.65	3.68	0.26	1.37	0.04	0.95	0.56	0.27	0.01	4.72	5.33	2.17	21.00	4.
1982	1.07	1.28	0.04	0.72	1.24	1.82	0.58	1.06	0.27	1.36	0.39	3.28	13.10	3
1983	0.86	0.65	0.08	0.05	1.95	0.43	0.48	1.39	1.09	0.05	0.31	1.09	8.44	2
1984	1.96	0.30	3.72	3.05	0.33	0.48	0.02	1.41	1.24	0.06	0.31	0.46	13.34	3
1985	0.01	0.46	2.11	0.83	0.22	0.66	0.01	0.11	0.00	0.54	0.01	0.70	5.66	2
1986	5.98	0.71	0.85	6.56	0.12	2.25	1.06	1.15	2.26	0.08	0.07	5.92	27.00	5
1987	2.56	0.11	0.00	2.38	0.69	1.32	0.80	0.96	2.97	0.02	0.21	1.33	13.36	3
1988	3.61	0.07	4.00	2.89	2.24	0.50	3.54	0.25	0.90	0.04	1.18	0.01	19.24	4
1989	1.09	1.71	0.97	1.48	0.24	1.18	0.01	0.05	0.18	0.12	2.53	0.38	9.95	3
1990	0.34	3.06	0.45	1.68	0.34	0.48	0.44	1.57	0.63	0.01	0.01	1.88	10.90	3
1991	5.08	0.00	0.51	0.14	0.72	1.88	1.18	1.86	2.94	0.44	0.84	7.54	23.11	4
1992	0.29	0.94	0.11	0.75	2.07	1.12	0.04	1.03	0.52	0.13	0.51	1.72	9.23	3
1993	1.38	1.96	0.92	0.13	0.02	0.13	0.00	0.15	0.06	0.64	1.88	0.17	7.45	2
1994	3.51	0.07	0.06	1.18	0.01	1.43	0.95	2.64	0.97	0.02	0.09	0.37	11.31	3
1995	0.58	0.00	0.05	0.21	1.15	0.45	0.00	0.41	1.12	0.25	3.67	0.00	7.88	2
1996	13.27	0.02	0.01	2.72	0.82	0.94	0.71	0.28	0.42	0.07	0.01	2.07	21.33	4
1997	3.13	6.34	2.60	2.26	3.01	6.10	3.40	2.55	3.38	0.02	0.52	0.00	33.31	5
1998	7.88	0.88	0.32	0.24	0.17	0.04	2.35	7.25	2.15	3.26	1.33	0.03	25.90	5
1999	0.06	1.96	3.00	7.34	0.18	0.37	0.34	0.47	0.02	0.02	2.77	0.24	16.77	4
2000	3.45	1.58	5.81	1.24	0.15	1.06	0.10	1.11	0.50	0.09	0.10	0.62	15.81	3
2001	0.28	1.62	0.10	0.03	0.32	0.13	0.26	1.61	0.78	0.90	0.62	0.44	7.10	2
2002	0.68	0.12	0.23	0.22	1.84	2.64	2.24	1.94	0.82	0.34	0.84	0.46	12.35	3
2003	0.88	0.38	0.00	0.91	0.13	0.18	0.00	0.96	0.46	0.26	2.54	0.56	7.26	2
2004	1.87	0.05	0.50	0.87	0.28	0.80	0.00	0.00	1.13	0.13	1.88	0.45	7.95	2
2005	0.07	2.76	0.09	2.14	0.82	0.72	0.10	0.16	0.57	3.03	6.53	0.72	17.71	4
2006	0.61	3.26	0.24	0.90	0.31	0.20	0.01	1.60	0.76	0.95	2.73	0.41	11.98	3
2007	0.05	0.00	0.76	6.43	0.04	0.02	0.48	0.49	0.17	0.11	2.93	1.66	13.14	3
2008	13.49	3.06	2.05	3.93	3.52	0.00	3.14	1.08	1.04	0.78	0.07	0.58	32.73	5
2009	0.98	1.12	1.34	0.17	0.90	3.71	2.53	2.56	2.14	0.05	0.43	0.00	15.93	3
2010	9.68	0.00	4.20	2.95	5.55	3.48	0.94	0.43	6.32	19.11	12.36	0.72	65.76	
2011	1.81	0.26	0.21	5.22	3.28	7.45	5.55	0.07	0.40	7.97	7.10	1.28	40.61	è
2012	1.67	0.02	0.93	0.14	1.01	1.63	1.24	0.02	0.40	0.01	3.03	2.13	11.85	3
2013	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	

Tabla 4. Cálculo del indicador de analogía hidrológica.

Una vez obtenidos los valores de este indicador, los ordenamos de menor a mayor, de tal forma que:

$$I_1 < I_2 < I_2 \dots < I_N$$

En la tabla 4 se presentan los valores de "I" ordenados de menor a mayor, junto con el período correspondiente:

No. Orden	PERIOD	O (julio - junio)	Desv Cuadr ordenada
1	1985	1986	2.38
2	2001	2002	2.66
3	2003	2004	2.70
4	1993	1994	2.73
5	1995	1996	2.81
6	2004	2005	2.82
7	1983	1984	2.91
8	1992	1993	3.04
9	1989	1990	3.15
10	1990	1991	3.30

Tabla 4. Resumen de los períodos históricos más similares a Jul/2013 – Jun/2014.

En la tabla 4 se puede ver que en términos del indicador "I" utilizado para identificar el período de mayor similitud hidrológica, jul/1985 – jul/1986 es el más parecido a los últimos doce meses (jul/2013 – jun/2014).

El segundo período identificado de esta forma, fue jul/2001 – jun/2002, luego fue jul/2003 – jun/2004, y así sucesivamente.

De esta forma, y en términos de este indicador, obtenemos los años en los que se observaron durante doce meses consecutivos, los valores "más parecidos" a los últimos doce meses.

Asumiendo que los caudales que siguieron al periodo del "Imin" son los que podrían continuar el momento actual (la situación de hoy), entonces se extrae dicha información histórica de los años que siguieron a ese período. Estos caudales que provienen de las **series semanales**, se modelan en el mediano plazo.

Es decir, para simular el período más parecido al actual se utilizarán los caudales históricos observados a partir de jul/1986.

Esta modelación se repetirá con los análogos que ocuparon las posiciones 2, 3, 4 y 5. Es decir, se utilizarán los datos de

- (2) Jul/2002 en adelante;
- (3) jul/2004 en adelante;
- (4) jul/1994 en adelante y
- (5) jul/1996 en adelante

En caso de que para alguna serie no exista información para el período análogo, ya que la identificación se hizo para las 30 series que reportan información (ver tabla 1), entonces se utilizará para dicha serie el período que tenga la mejor similitud hidrológica y que –naturalmente- tenga información. Es decir, se empieza con el análogo (1), luego el (2) y así sucesivamente, hasta aquel análogo para el cual la serie tenga registros históricos.

Todos los cálculos aquí descritos se repetirán a comienzos de cada mes, tan pronto se tenga toda la información del mes inmediatamente anterior.