MODELOS DE CONTROL - SEGUIMIENTO A EVENTOS DE FRECUENCIA

CENTRAL TERMOELÉCTRICA TERMOTASAJERO UNIDAD 1

TABLA DE CONTENIDO

1.	OBJETIVO	6
2.	ALCANCE DE LOS TRABAJOS	6
3.	ANTECEDENTES	6
4.	METODOLOGÍA	7
5.	RESULTADOS RESPUESTA REGULACIÓN PRIMARIA MODELOS	7
5	5.1. TERMOTASAJERO U1	7
5	i.2. CÁLCULO DE INDICADORES	16
6.	AJUSTE FINO MODELO GOBERNADOR	18
7.	CONCLUSIONES	21
8.	REFERENCIAS	22

LISTA DE TABLAS

Tabla 1. Eventos frecuencia evaluados por el CND	6
Tabla 2. Comparación índice EC calculado XM vs IEB	16
Tabla 3. Índice ECEAMIN, CCL y EC	17
Tabla 4. Parámetros Ajuste Fino Modelo "ACTUADOR" U1 Termotasajero	18
Tabla 5. Parámetros Ajuste Fino Modelo "POTENCIA" U1 Termotasajero	19
Tabla 6. Parámetros Ajuste Fino Modelo "TURBINA" U1 Termotasajero	20

LISTA DE FIGURAS

Figura 1.	Comp	aració	ón pote	ncia 	activ	a siı	mulada	а у 	real,	Event	o_ 	1_202	23_07	_31	_80_	_42_	_55 _8
Figura 2.	Comp	aració	ón pote	ncia 	activ	a siı	mulad	а у 	real,	Event	o_	2_202	3_07	_29	_18_	_45_	00_ 8
Figura 3.	Comp	aració	ón pote	ncia 	activ		mulad	-	real,	Event	o_	3_202	23_07	_29	_16_	_18_	_33 _9
Figura 4.	Comp	aració	ón pote	ncia	activ	a siı	mulada	a y	real,	Event	o	4_202	3_07	_29	_02_	_24_	_20 _9
Figura 5.	Comp	aració	ón pote	ncia 	activ	a siı	mulad	а у 	real,	Event	o_	5_202	23_07	_28	_01_	_42_ 	45 10
Figura 6.	Comp	aració	ón pote	ncia 	activ	a siı	mulad	а у 	real,	Event	o_	6_202	23_07	_27	_13_	_30_ 	_44 10
Figura 7.	Comp	aració	ón pote	ncia 	activ	a siı	mulada	а у 	real,			7_202			_11_	_31_ 	_38 11
Figura 8.	Comp	aració	ón pote	ncia 	activ	a siı	mulada	а у 	real,	Event	o_ 	8_202	07	_27	_09_	_50_ 	_50 11
Figura 9.	Comp	aració	ón pote	ncia	activ	a siı	mulad	а у 	real,	Event	o_	9_202	23_07	_26	_10_	_02_ 	_55 12
Figura Event	10. to_10_		Compar _06_23			•	tencia	a 	ac	tiva		simul	ada 		y 		eal, 12
Figura Event	11. to_11_		Compar _06_22				tencia	a 	ac	tiva		simul	ada 		y 		eal, 13
Figura Event	12. to_12_		Compar _06_06				tencia		ac	tiva		simul	ada 		y 		eal, 13
Figura Event	13. to_13_		Compar _05_22				tencia	a 	ac	tiva		simul	ada 		y 		eal, 14
Figura Event	14. to_14_		Compar _05_19				tencia		ac	tiva		simul	ada 		y 		eal, 14
Figura Event	15. to_15_		Compar _05_19				tencia	a 	ac	tiva		simul	ada 		y 	re	eal, 15
Figura 16					•												
Figura 17					•												
Figura 18	. Mode	elo de	control	del	ploqu	µe "⊺	IURBI	ΝA	" Acı	ierdo (ĴΝ	O 143	7				20

1. OBJETIVO

Presentar los resultados del ajuste fino realizado al modelo del gobernador de velocidad/potencia de la unidad 1 de generación de la planta Termotasajero, para el cumplimiento de la regulación primaria de frecuencia con la inyección de eventos reales del sistema colombiano.

2. ALCANCE DE LOS TRABAJOS

El presente informe tiene por alcance el ajuste fino del modelo del gobernador de velocidad/potencia de la unidad 1 de la central Termotasajero, para garantizar el cumplimiento de la regulación primaria ante la inyección de eventos de frecuencia.

3. ANTECEDENTES

Según el informe de "Seguimiento a modelos de control de TERMOTASAJERO ante eventos de frecuencia" [5] emitido el 21 de septiembre de 2023 por el Centro Nacional de Despacho (CND), el modelo del gobernador de velocidad/potencia de la Unidad 1 de la planta Termotasajero no cumple con las exigencias del seguimiento, siendo el patrón que más se repite el asociado a que la potencia máxima del modelo difiere de la potencia máxima real del generador (eventos ocurridos entre el 19 de mayo de 2023 y 31 de julio de 2023), por lo tanto dicho modelo debe ser revisado y refinado.

Los eventos de frecuencia usados por el CND para la evaluación de los modelos de los gobernadores de velocidad/potencia se listan a continuación:

Tabla 1. Eventos frecuencia evaluados por el CND modelo de Gobernador U1 Termotasajero

Fecha Eventos
Evento_1_2023_07_31_08_42_55
Evento_2_2023_07_29_18_45_00
Evento_3_2023_07_29_16_18_33
Evento_4_2023_07_29_02_24_20
Evento_5_2023_07_28_01_42_45
Evento_6_2023_07_27_13_30_44
Evento_7_2023_07_27_11_31_38
Evento_8_2023_07_27_09_50_50
Evento_9_2023_07_26_10_02_55
Evento_10_2023_06_23_04_31_30
Evento_11_2023_06_22_00_11_20
Evento_12_2023_06_06_15_09_30
Evento_13_2023_05_22_22_22_20
Evento_14_2023_05_19_16_03_00
Evento_15_2023_05_19_02_29_00

4. METODOLOGÍA

Tomando como base el modelo del gobernador de velocidad de la unidad 1 de Termotasajero, el cual está aprobado por el acuerdo *CNO 1437 de 2021* [6], se realiza un ajuste fino de su parametrización con el objetivo de mejorar el patrón de la potencia máxima del modelo difiere de la potencia máxima real del generador, ante la inyección de los eventos de frecuencia mostrados en la Tabla 1.

Una vez inyectados los eventos listados en el modelo refinado del gobernador de velocidad, son calculados los indicadores EAMN, CCL y EC con base en el acuerdo CNO 1643 y verificando el cumplimiento.

Se considerará que el modelo es exitoso ante la inyección del evento de frecuencia si se cumple al menos con una de las siguientes condiciones:

- EC ≤ 30 %.
- Error absoluto máximo obtenido al comparar las señales simulada y real en toda la ventana de tiempo de análisis, es menor o igual al error de medición siempre y cuando el índice CCL sea mayor a 0.45.

Dado que no se cuenta con el error de medición en Termotasajero, se buscará dar cumplimiento al índice EC.

5. RESULTADOS RESPUESTA REGULACIÓN PRIMARIA MODELOS

5.1. Termotasajero U1

De la Figura 1 a la Figura 15, se presenta la frecuencia asociada al evento y la comparación de la potencia activa del registro (roja) con la obtenida en las simulaciones realizadas (azul), para la unidad Termotasajero 1, después de llevar a cabo el ajuste fino.

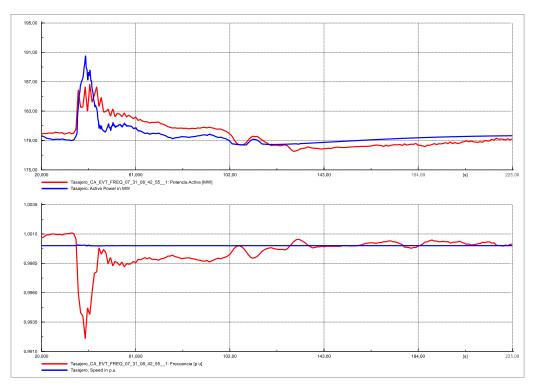


Figura 1. Comparación potencia activa simulada y real, Evento_1_2023_07_31_08_42_55

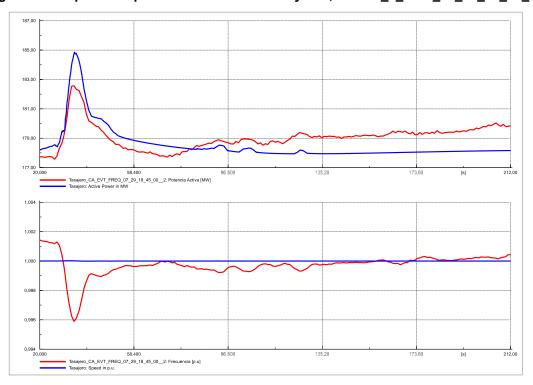


Figura 2. Comparación potencia activa simulada y real, Evento_2_2023_07_29_18_45_00

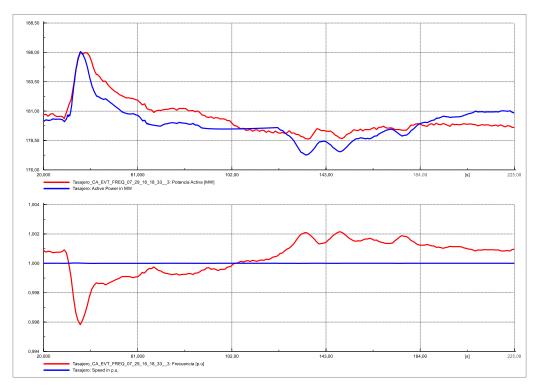


Figura 3. Comparación potencia activa simulada y real, Evento_3_2023_07_29_16_18_33

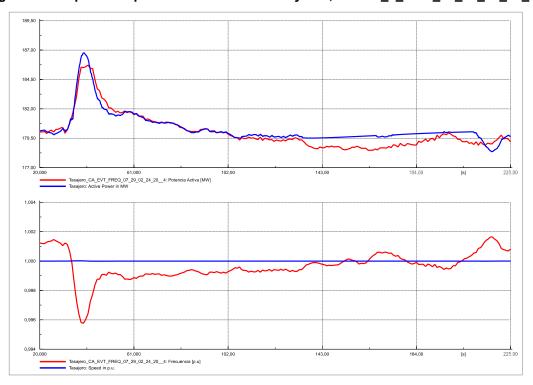


Figura 4. Comparación potencia activa simulada y real, Evento_4_2023_07_29_02_24_20

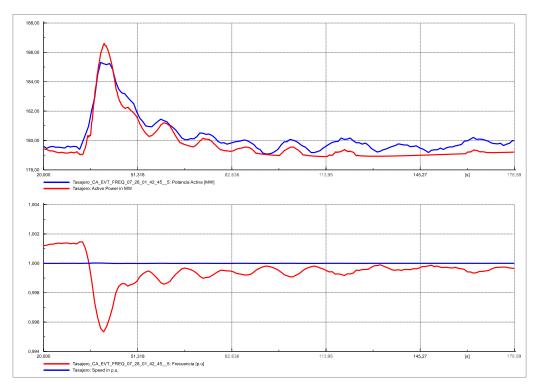


Figura 5. Comparación potencia activa simulada y real, Evento_5_2023_07_28_01_42_45

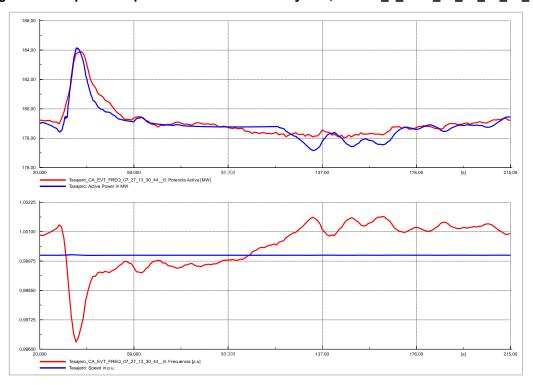


Figura 6. Comparación potencia activa simulada y real, Evento_6_2023_07_27_13_30_44

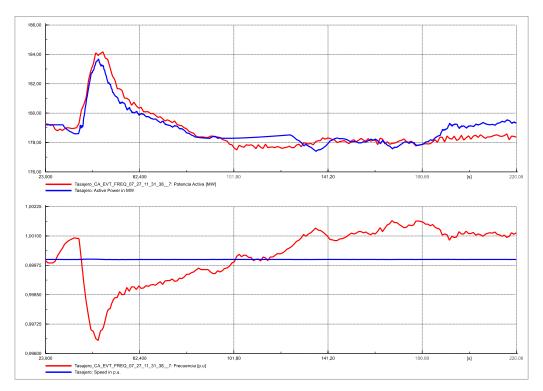


Figura 7. Comparación potencia activa simulada y real, Evento_7_2023_07_27_11_31_38

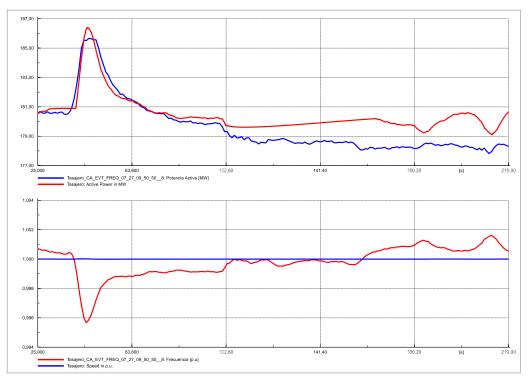


Figura 8. Comparación potencia activa simulada y real, Evento_8_2023_07_27_09_50_50

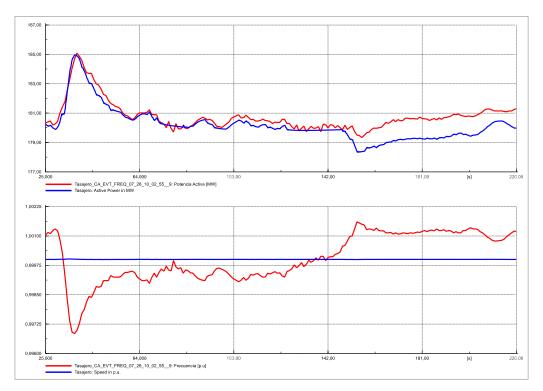


Figura 9. Comparación potencia activa simulada y real, Evento_9_2023_07_26_10_02_55

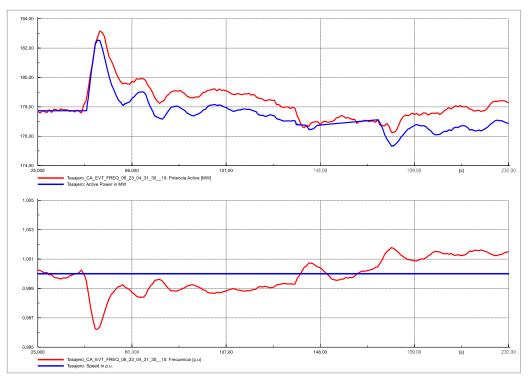


Figura 10. Comparación potencia activa simulada y real, Evento_10_2023_06_23_04_31_30

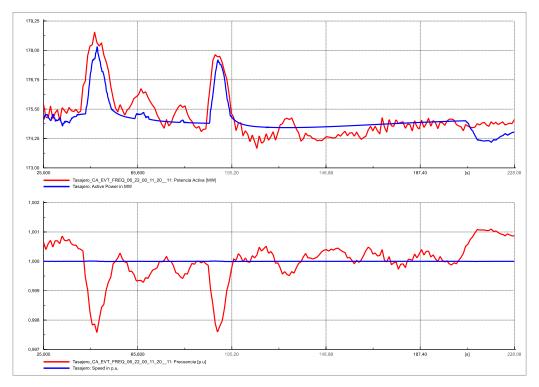


Figura 11. Comparación potencia activa simulada y real, Evento_11_2023_06_22_00_11_20

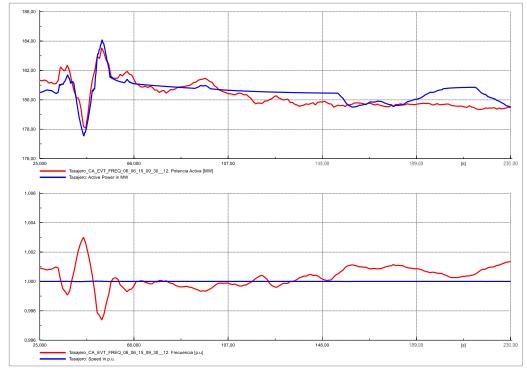


Figura 12. Comparación potencia activa simulada y real, Evento_12_2023_06_06_15_09_30

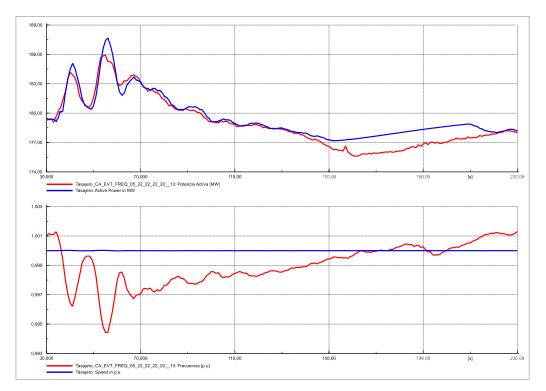


Figura 13. Comparación potencia activa simulada y real, Evento_13_2023_05_22_22_20

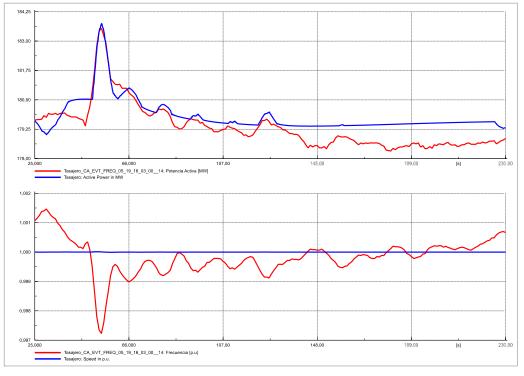


Figura 14. Comparación potencia activa simulada y real, Evento_14_2023_05_19_16_03_00

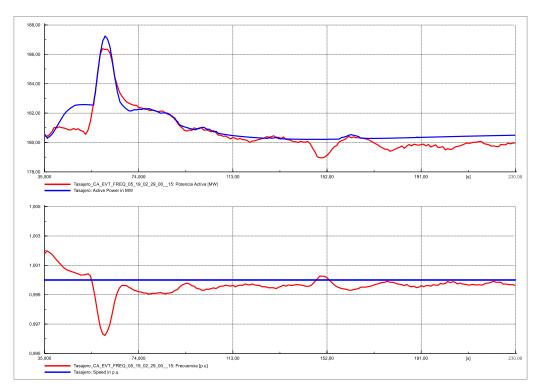


Figura 15. Comparación potencia activa simulada y real, Evento_15_2023_05_19_02_29_00

5.2. Cálculo de Indicadores

En la Tabla 2 se presenta una comparativa del indicador EC calculado por XM y por IEB para el desempeño del modelo del gobernador de la unidad 1 de Termotasajero, aprobado según el acuerdo CNO 1437, sin ajuste fino, ante la inyección de los eventos listados en la Tabla 1.

En la Tabla 3 se muestran los resultados del cálculo de los indicadores EAMN, CCL y EC para el modelo del gobernador de la unidad 1 de Termotasajero, habiendo realizado el ajuste fino, ante la inyección de los eventos.

Tabla 2. Comparación índice EC calculado XM vs IEB Modelo Gobernador U1 Sin Ajuste Fino

Evento	Índice EC XM	Índice EC IEB	Cumplimiento
2023_07_31_08_42_55_EVT_1_	27,839	28,656	SI
2023_07_29_18_45_00_EVT_2_	48,291	53,329	NO
2023_07_29_16_18_33_EVT_3_	49,049	52,811	NO
2023_07_29_02_24_20_EVT_4_	32,901	40,612	NO
2023_07_28_01_42_45_EVT_5_	37,429	44,525	NO
2023_07_27_13_30_44_EVT_6_	46,080	47,162	NO
2023_07_27_11_31_38_EVT_7_	35,122	35,194	NO
2023_07_27_09_50_50_EVT_8_	33,271	34,843	NO
2023_07_26_10_02_55_EVT_9_	70,849	83,330	NO
2023_06_23_04_31_30_EVT_10_	30,561	32,752	NO
2023_06_22_00_11_20_EVT_11_	19,207	19,138	SI
2023_06_06_15_09_30_EVT_12_	85,612	96,092	NO
2023_05_22_22_22_20_EVT_13_	19,826	24,887	SI
2023_05_19_16_03_00_EVT_14_	50,122	52,415	NO
2023_05_19_02_29_00_EVT_15_	46,466	48,348	NO

Tabla 3. Índice EAMN, CCL y EC Modelo Gobernador U1 Con Ajuste Fino

Evento	Índice ANTES de Ajuste Fino EC	Cumplimiento ANTES de Ajuste Fino	D	ndices ESPUE Ajuste F CCL		Cumplimiento DESPUES de Ajuste Fino
2023_07_31_08_42_55_EVT_1_	27,839	SI	14,792	0,769	18,946	SI
2023_07_29_18_45_00_EVT_2_	48,291	NO	20,076	0,624	28,814	SI
2023_07_29_16_18_33_EVT_3_	49,049	NO	15,391	0,850	15,219	SI
2023_07_29_02_24_20_EVT_4_	32,901	NO	7,822	0,944	6,700	SI
2023_07_28_01_42_45_EVT_5_	37,429	NO	9,528	0,974	6,066	SI
2023_07_27_13_30_44_EVT_6_	46,080	NO	6,757	0,945	6,131	SI
2023_07_27_11_31_38_EVT_7_	35,122	NO	9,758	0,935	8,133	SI
2023_07_27_09_50_50_EVT_8_	33,271	NO	19,300	0,920	13,640	SI
2023_07_26_10_02_55_EVT_9_	70,849	NO	12,824	0,900	11,435	SI
2023_06_23_04_31_30_EVT_10_	30,561	NO	17,597	0,908	13,380	SI
2023_06_22_00_11_20_EVT_11_	19,207	SI	13,076	0,875	12,790	SI
2023_06_06_15_09_30_EVT_12_	85,612	NO	15,336	0,778	18,775	SI
2023_05_22_22_22_20_EVT_13_	19,826	SI	10,689	0,959	7,387	SI
2023_05_19_16_03_00_EVT_14_	50,122	NO	13,967	0,902	11,866	SI
2023_05_19_02_29_00_EVT_15_	46,466	NO	7,074	0,944	6,356	SI

De la tabla anterior, se observa como el ajuste fino propuesto en el modelo de gobernador de la unidad 1 de Termotasajero mejora el desempeño de este ante la inyección de eventos de frecuencia, lo anterior se valida por medio del cumplimiento del índice EC el cual en todos los casos es inferior a 30%.

6. AJUSTE FINO MODELO GOBERNADOR

Se realizó un ajuste fino al modelo del gobernador de velocidad de la unidad 1 de Termotasajero con el objetivo de mejorar el desempeño en respuesta a eventos deinyección de frecuencia reales. Los resultados de este ajuste se presentan en la Tabla 4 ala Tabla 6 y los diagramas de bloque de cada control en la Figura 16 a la Figura 18. Es importante destacar que, durante este proceso, no fue necesario realizar cambios estructurales en ninguno de los controles asociados al Regulador de Velocidad.

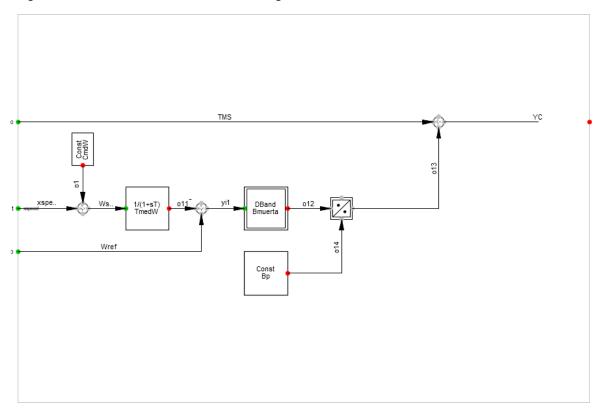


Figura 16. Modelo de control del bloque "ACTUADOR" Acuerdo CNO 1437

Tabla 4. Parámetros Ajuste Fino Modelo "ACTUADOR" U1 Termotasajero

Parámetro	Valor Anterior	Valor Nuevo
TmedW	0,05	0
Bmuerta*	0,00083333	0,0005
Bp*	0,05	0,0533
CmdW	0	0

Nota *: La Banda Muerta – Bmuerta y Estatismo – Bp, fueron ajustados según información PARATEC.

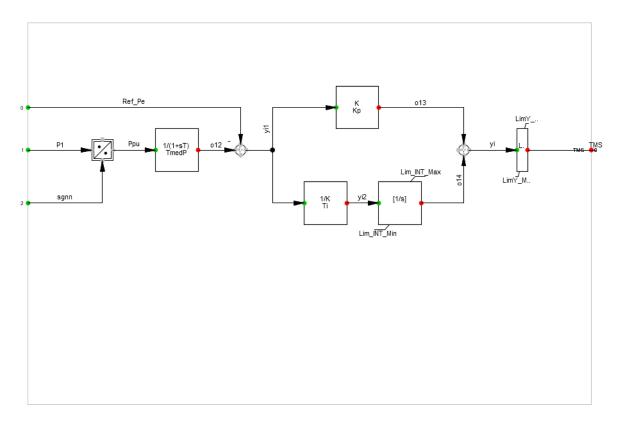


Figura 17. Modelo de control del bloque "POTENCIA" Acuerdo CNO 1437

Tabla 5. Parámetros Ajuste Fino Modelo "POTENCIA" U1 Termotasajero

•		
Parámetro	Valor Anterior	Valor Nuevo
TmedP	0	0
Кр	0,15	0,15
Ti	60	20
Lim_INT_Min	-10	-10
LimY_Min	0	0
Lim_INT_Max	120	120
LimY_Max	0,86	0,91

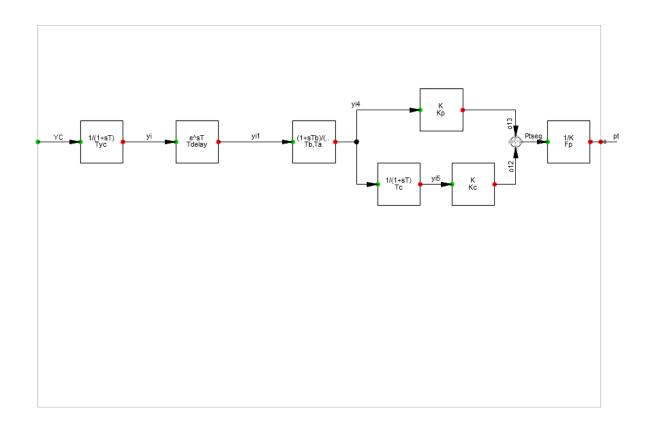


Figura 18. Modelo de control del bloque "TURBINA" Acuerdo CNO 1437

Tabla 6. Parámetros Ajuste Fino Modelo "TURBINA" U1 Termotasajero

Parámetro	Valor Anterior	Valor Nuevo
Тус	1,75	0,02
Tdelay	0,3	0
Tb	20	24
Та	30	53
Кр	0,7	0,7
Тс	3	3
Kc	0,3	0,3
Fp	0,85	0,85

7. CONCLUSIONES

- 1) Los resultados obtenidos muestran, que una vez realizado el ajuste fino en el modelo del gobernador de la unidad 1 de Termotasajero, y ante la inyección de los eventos de frecuencia presentados en la Tabla 1, se cumple con el indicador EC < 30%, por lo tanto, se concluye que el cambio realizado mejora el desempeño dinámico del modelo en cuanto al patrón asociado a que la potencia máxima del modelo difiere de la potencia máxima real del generador
- 2) En la implementación del ajuste fino del modelo de gobernador de velocidad, aprobado según el acuerdo CNO 1437 para la Unidad 1 de Termotasajero, no fue necesario realizar cambios estructurales en los diagramas de bloques asociados a este control.

8. REFERENCIAS

- [1]. KUNDUR, Prabha,"Power System Stability and Control", McGraw-Hill, NewYork, 1994.
- [2]. Resolución CREG 025. Por la cual se establece el Código de Redes, como parte del Reglamento de Operación del Sistema Interconectado Nacional, julio 1995.
- [3]. Resolución CREG 135. Por la cual se modifica la Resolución CREG 025 de 1995 que establece el Reglamento de Operación del Sistema Interconectado Nacional, septiembre 2013.
- [4]. Acuerdo 1643, " Por el cual se establecen los requerimientos para la obtención y validación de parámetros del generador y los modelos del sistema de excitación, control de velocidad/potencia y estabilizadores de sistemas de potencia de las unidades de generación sincrónicas del SIN despachadas centralmente, y se definen las pautas para las pruebas y reajustes de los controles de generación", Consejo Nacional de Operación CNO, noviembre de 2022.
- [5]. Centro Nacional de Despacho, "Seguimiento a modelos de control de TERMOTASAJERO ante eventos de frecuencia", CND, septiembre de 2023.
- [6]. Acuerdo 1437, "Por el cual se aprueba la incorporación de un cambio de los modelos del generador asociados a las plantas de generación Tasajero I y Tasajero II", Consejo Nacional de Operación CNO, junio de 2021.